原文地址:http://www.cnblogs.com/GXZlegend


题目描述

文理分科是一件很纠结的事情!(虽然看到这个题目的人肯定都没有纠结过)
小P所在的班级要进行文理分科。他的班级可以用一个n*m的矩阵进行描述,每个格子代表一个同学的座位。每位同学必须从文科和理科中选择一科。同学们在选择科目的时候会获得一个满意值。满意值按如下的方式得到:
1.如果第i行第秒J的同学选择了文科,则他将获得art[i][j]的满意值,如果选择理科,将得到science[i][j]的满意值。
2.如果第i行第J列的同学选择了文科,并且他相邻(两个格子相邻当且仅当它们拥有一条相同的边)的同学全部选择了文科,则他会更开心,所以会增加same_art[i][j]的满意值。
3.如果第i行第j列的同学选择了理科,并且他相邻的同学全部选择了理科,则增加same_science[i]j[]的满意值。
小P想知道,大家应该如何选择,才能使所有人的满意值之和最大。请告诉他这个最大值。

输入

第一行为两个正整数:n,m
接下来n术m个整数,表示art[i][j];
接下来n术m个整数.表示science[i][j];
接下来n术m个整数,表示same_art[i][j];

输出

输出为一个整数,表示最大的满意值之和

样例输入

3 4
13 2 4 13
7 13 8 12
18 17 0 5
8 13 15 4
11 3 8 11
11 18 6 5
1 2 3 4
4 2 3 2
3 1 0 4
3 2 3 2
0 2 2 1
0 2 4 4

样例输出

152


题解

网络流最小割,和 bzoj3438 差不多。

具体做法:

1.S向每个学生连边,容量为理科收益;每个学生向T连边,容量为文科收益。

2.将每个学生组合拆成两个,S与第一个连边,容量为全理科收益,第一个向组合中学生连边,容量为inf;

组合中学生向第二个连边,容量为inf,第二个向T连边,容量为全文科收益。

3.跑最小割,答案为总收益-mincut。

#include <cstdio>
#include <cstring>
#include <queue>
#define inf 0x3fffffff
using namespace std;
queue<int> q;
int head[40000] , to[300000] , val[300000] , next[300000] , cnt = 1 , s , t , dis[40000];
void add(int x , int y , int z)
{
to[++cnt] = y , val[cnt] = z , next[cnt] = head[x] , head[x] = cnt;
to[++cnt] = x , val[cnt] = 0 , next[cnt] = head[y] , head[y] = cnt;
}
bool bfs()
{
int x , i;
while(!q.empty()) q.pop();
memset(dis , 0 , sizeof(dis));
dis[s] = 1 , q.push(s);
while(!q.empty())
{
x = q.front() , q.pop();
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && !dis[to[i]])
{
dis[to[i]] = dis[x] + 1;
if(to[i] == t) return 1;
q.push(to[i]);
}
}
}
return 0;
}
int dinic(int x , int low)
{
if(x == t) return low;
int temp = low , i , k;
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && dis[to[i]] == dis[x] + 1)
{
k = dinic(to[i] , min(temp , val[i]));
if(!k) dis[to[i]] = 0;
val[i] -= k , val[i ^ 1] += k;
if(!(temp -= k)) break;
}
}
return low - temp;
}
int main()
{
int n , m , i , x , ans = 0;
scanf("%d%d" , &n , &m);
s = 0 , t = 3 * n * m + 1;
for(i = 1 ; i <= n * m ; i ++ ) scanf("%d" , &x) , add(s , i , x) , ans += x;
for(i = 1 ; i <= n * m ; i ++ ) scanf("%d" , &x) , add(i , t , x) , ans += x;
for(i = 1 ; i <= n * m ; i ++ )
{
scanf("%d" , &x) , add(s , i + n * m , x) , add(i + n * m , i , inf) , ans += x;
if(i % m != 0) add(i + n * m , i + 1 , inf);
if(i % m != 1) add(i + n * m , i - 1 , inf);
if(i > m) add(i + n * m , i - m , inf);
if(i <= (n - 1) * m) add(i + n * m , i + m , inf);
}
for(i = 1 ; i <= n * m ; i ++ )
{
scanf("%d" , &x) , add(i + 2 * n * m , t , x) , add(i , i + 2 * n * m , inf) , ans += x;
if(i % m != 0) add(i + 1 , i + 2 * n * m , inf);
if(i % m != 1) add(i - 1 , i + 2 * n * m , inf);
if(i > m) add(i - m , i + 2 * n * m , inf);
if(i <= (n - 1) * m) add(i + m , i + 2 * n * m , inf);
}
while(bfs()) ans -= dinic(s , inf);
printf("%d\n" , ans);
return 0;
}

【bzoj3894】文理分科 网络流最小割的更多相关文章

  1. [Bzoj3894]文理分科(最小割)

    Description  文理分科是一件很纠结的事情!(虽然看到这个题目的人肯定都没有纠结过)  小P所在的班级要进行文理分科.他的班级可以用一个n*m的矩阵进行描述,每个格子代表一个同学的座位.每位 ...

  2. D - 文理分科 (网络流->最小割)

    题目链接:https://cn.vjudge.net/contest/281959#problem/D 题目大意:中文题目 具体思路:我们需要求出最大的满意值,从另一方面想,我们可以求出总的满意值,然 ...

  3. 【BZOJ3894】文理分科(最小割)

    [BZOJ3894]文理分科(最小割) 题面 BZOJ Description 文理分科是一件很纠结的事情!(虽然看到这个题目的人肯定都没有纠 结过) 小P所在的班级要进行文理分科.他的班级可以用一个 ...

  4. BZOJ_3894_文理分科&&BZOJ_2127_happiness_最小割

    BZOJ_3894_文理分科_最小割 Description  文理分科是一件很纠结的事情!(虽然看到这个题目的人肯定都没有纠 结过)  小P所在的班级要进行文理分科.他的班级可以用一个n*m的矩阵进 ...

  5. [BZOJ 3894] 文理分科 【最小割】

    题目链接:BZOJ - 3894 题目分析 最小割模型,设定一个点与 S 相连表示选文,与 T 相连表示选理. 那么首先要加上所有可能获得的权值,然后减去最小割,即不能获得的权值. 那么对于每个点,从 ...

  6. bzoj 3894 文理分科【最小割+dinic】

    谁说这道和2127是双倍经验的来着完全不一样啊? 数组开小会TLE!数组开小会TLE!数组开小会TLE! 首先sum统计所有收益 对于当前点\( (i,j) \)考虑,设\( x=(i-1)*m+j ...

  7. 【题解】 bzoj3894: 文理分科 (网络流/最小割)

    bzoj3894,懒得复制题面,戳我戳我 Solution: 首先这是一个网络流,应该还比较好想,主要就是考虑建图了. 我们来分析下题面,因为一个人要么选文科要么选理科,相当于两条流里面割掉一条(怎么 ...

  8. Bzoj3894 文理分科

    Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 667  Solved: 389 Description  文理分科是一件很纠结的事情!(虽然看到这个题 ...

  9. 【bzoj3774】最优选择 网络流最小割

    题目描述 小N手上有一个N*M的方格图,控制某一个点要付出Aij的代价,然后某个点如果被控制了,或者他周围的所有点(上下左右)都被控制了,那么他就算是被选择了的.一个点如果被选择了,那么可以得到Bij ...

随机推荐

  1. 4.vue引入axios同源跨域

    前言: 跨域方案有很多种,既然我们用到了Vue,那么就使用vue提供的跨域方案. 解决方案: 1.修改HttpRequestUtil.js import axios from 'axios' expo ...

  2. java数据库 JDBC操作MySQL数据库常用API 部门表和员工表 创建表 添加数据 查询数据

    package com.swift.department; import java.sql.Connection; import java.sql.PreparedStatement; import ...

  3. springmvc 前端表单提交给后端出现乱码

    在springmvc框架练习中遇到了乱码问题,经过一番网上查找解决方法之后,最后发现是需要在tomcat中的server.xml中添加编码设置 URIEncoding="UTF-8" ...

  4. Java的按值传递和按引用传递解说

    在网上看到的一个帖子解释Java的按值传递和按引用传递,感觉挺全面,就转过来,以供以后学习参考: 1:按值传递是什么 指的是在方法调用时,传递的参数是按值的拷贝传递.示例如下: public clas ...

  5. JS下载文件常用的方式

    下载附件(image,doc,docx, excel,zip,pdf),应该是实际工作中经常遇到一个问题:这里使用过几种方式分享出来仅供参考; 初次写可能存在问题,有问题望指出 ​ 主要了解的几个知识 ...

  6. java多线程批量读取文件(七)

    新公司入职一个多月了,至今没有事情可以做,十来个新同事都一样抓狂,所以大家都自己学习一些新东西,我最近在看zookeeper,感觉蛮不错的,和微服务的zuul以及eureka功能类似,只是代码复杂了一 ...

  7. JAVA 扫雷 程序

    文件列表 2.主程序入口 3.1部分源代码 package MineSweeper; import java.awt.BorderLayout; import java.awt.Font; impor ...

  8. 004---Django简单示例

    一.MVC与MTV模型  在web开发领域里著名的MVC模式,所谓MVC就是把web应用分为模型(M).控制器(C).视图(V)三层,达到了解耦的效果. 一次完整的请求如图: 但是django用的是M ...

  9. 30-RoutingMiddleware介绍以及MVC引入

    1-构建路由 public class Startup { // This method gets called by the runtime. Use this method to add serv ...

  10. 1096: [ZJOI2007]仓库建设

    1096: [ZJOI2007]仓库建设 思路 斜率优化. 代码 #include<cstdio> #include<iostream> using namespace std ...