【bzoj4010】[HNOI2015]菜肴制作 拓扑排序+堆
题目描述
给你一张有向图,问:编号-位置序(即每个编号的位置对应的序列)最小(例如1优先出现在前面,1位置相同的2优先出现在前面,以此类推)的拓扑序是什么?
输入
第一行是一个正整数D,表示数据组数。
输出
输出文件仅包含 D 行,每行 N 个整数,表示最优的菜肴制作顺序,或者”Impossible!”表示无解(不含引号)。
样例输入
3
5 4
5 4
5 3
4 2
3 2
3 3
1 2
2 3
3 1
5 2
5 2
4 3
样例输出
1 5 3 4 2
Impossible!
1 5 2 4 3
题解
拓扑排序+堆
正着直接按字典序最小拓扑排序是错的,反例:
按照题目描述,答案应该为1 5 2 3 4,而正着拓扑排序的答案为1 3 4 5 2
这里有一个神奇的结论:正的编号-位置序(每个编号的位置对应的序列)等于反的位置-编号序(每个位置的编号对应的序列,即字典序)的逆序。
换句话说,本题的答案就是把图反过来得到的图的字典序最大的拓扑序的逆序。
证明:反图的字典序最大,就是尽量的把编号较大的数放在反图遍历序的前面,对应的就在原图的后面,就相当于所有小于这个编号的数向前移动了1个位置。因此,对于某数都是尽量的在它的后面放数。因此尽量的让大数在反图中先遍历,得到的字典序最大拓扑序的逆序就是远答案。
所以使用堆来维护字典序,进行拓扑排序,倒过来输出即为答案。
#include <queue>
#include <cstdio>
#include <cstring>
#define N 100010
using namespace std;
priority_queue<int> q;
int head[N] , to[N] , next[N] , cnt , d[N] , ans[N] , tot;
inline void add(int x , int y)
{
to[++cnt] = y , next[cnt] = head[x] , head[x] = cnt , d[y] ++ ;
}
int main()
{
int T;
scanf("%d" , &T);
while(T -- )
{
memset(head , 0 , sizeof(head)) , memset(d , 0 , sizeof(d)) , cnt = tot = 0;
int n , m , i , x , y;
scanf("%d%d" , &n , &m);
for(i = 1 ; i <= m ; i ++ ) scanf("%d%d" , &x , &y) , add(y , x);
for(i = 1 ; i <= n ; i ++ )
if(!d[i])
q.push(i);
while(!q.empty())
{
x = q.top() , q.pop() , ans[++tot] = x;
for(i = head[x] ; i ; i = next[i])
{
d[to[i]] -- ;
if(!d[to[i]]) q.push(to[i]);
}
}
if(tot == n)
for(i = n ; i ; i -- )
printf("%d " , ans[i]);
else printf("Impossible!");
printf("\n");
}
return 0;
}
【bzoj4010】[HNOI2015]菜肴制作 拓扑排序+堆的更多相关文章
- BZOJ4010[HNOI2015]菜肴制作——拓扑排序+堆
题目描述 知名美食家小 A被邀请至ATM 大酒店,为其品评菜肴. ATM 酒店为小 A 准备了 N 道菜肴,酒店按照为菜肴预估的质量从高到低给予 1到N的顺序编号,预估质量最高的菜肴编号为1.由于菜肴 ...
- BZOJ4010: [HNOI2015]菜肴制作(拓扑排序 贪心)
题意 题目链接 Sol 震惊,HNOI竟出NOI原题 直接在反图上贪心一下. // luogu-judger-enable-o2 // luogu-judger-enable-o2 #include& ...
- 【BZOJ4010】[HNOI2015]菜肴制作 拓扑排序
[BZOJ4010][HNOI2015]菜肴制作 Description 知名美食家小 A被邀请至ATM 大酒店,为其品评菜肴. ATM 酒店为小 A 准备了 N 道菜肴,酒店按照为菜肴预估的质量从高 ...
- bzoj 4010: [HNOI2015]菜肴制作 拓扑排序
题目链接: 题目 4010: [HNOI2015]菜肴制作 Time Limit: 5 Sec Memory Limit: 512 MB 问题描述 知名美食家小 A被邀请至ATM 大酒店,为其品评菜肴 ...
- [LOJ2114][HNOI2015]-菜肴制作-拓扑排序+贪心
<题面> 一个蒟蒻的痛苦一天 在今天的节目集训中,麦蒙将带领大家学习9种错误的解题策略 $15\%$算法(看两个就往下走吧) 1> puts("Impossible!&qu ...
- 【luoguP3243】[HNOI2015]菜肴制作--拓扑排序
题目描述 知名美食家小 A被邀请至ATM 大酒店,为其品评菜肴. ATM 酒店为小 A 准备了 N 道菜肴,酒店按照为菜肴预估的质量从高到低给予1到N的顺序编号,预估质量最高的菜肴编号为1. 由于菜肴 ...
- 洛谷P3243 [HNOI2015]菜肴制作 拓扑排序+贪心
正解:拓扑排序 解题报告: 传送门! 首先看到它这个约束就应该要想到拓扑排序辣QwQ 首先想到的应该是用优先队列代替队列,按照节点编号排序 然后也很容易被hack:<5,1> 正解应为5, ...
- 洛谷P3243 [HNOI2015]菜肴制作——拓扑排序
题目:https://www.luogu.org/problemnew/show/P3243 正向按字典序拓扑排序很容易发现是不对的,因为并不是序号小的一定先做: 但若让序号大的尽可能放在后面,则不会 ...
- bzoj4010: [HNOI2015]菜肴制作(拓扑排序+贪心+堆)
这题不是求最小字典序...撕烤了半个小时才发现不对劲T T 这题是能让小的尽量前就尽量前,无论字典序...比如1能在2前面就一定要在2前面... 显然是要先拓扑排序,让小的尽量前转化成让大的尽量往后丢 ...
随机推荐
- JSON格式自动解析遇到的调用方法问题.fromJson() ..readValue()
所使用的API Store是 聚合数据 使用 手机归属地查询 功能 因百度的apistore.baidu.com 2016年12月开始至今天不接受新用户调取.聚合数据一个接口免费. 一.通过谷歌的go ...
- javascript中call,apply,bind的使用
不同点: 1.call():传参方式跟bind一样(都是以逗号隔开的传参方式),但是跟apply(以数组的形式传参)不一样, 2.bind(): 此方法应用后的情形跟call和apply不一样.该方法 ...
- WIN10使用安装包安装Mysql5.6+JDBC
很多教程教的是安装绿色版mysql或者是安装zip版的mysql,没什么不好,各有千秋,今天要教大家的是使用mysql-installer-community-5.6.43.0.msi安装mysql5 ...
- 协议 - OSI七层网络协议模型
摘自:https://www.cnblogs.com/oneplace/p/5611094.html 互联网协议 本文全文转载阮一峰老师的两篇文章,自己做了一些添加内容 参考:互联网协议入门(一) 互 ...
- git 代码托管使用方法
Git代码托管 1 准备材料 在coding,github这些代码托管网站上申请一个账户. Linux平台什么需要一个git,如ubuntu 需要 $ sudo apt-get install git ...
- 子查询,用户管理,pymysql使用
当我们的一条记录 分散不同的表中时,就需要进行多表查询例如 一对一 一对多 多对多 1.笛卡尔积查询 意思就是将两个表中的所有数据 全部关联在一起例如A表有两条 B表有三条 一共有6条会产生大量的错误 ...
- cookie操作和代理
cookie操作 爬取豆瓣个人主页 # -*- coding: utf-8 -*- import scrapy class DoubanSpider(scrapy.Spider): name = 'd ...
- C语言函数篇(四)函数的设计
1. 函数设计的时候,如果使用到全局变量,就尽量通过参数的形式传递进来 也就是说,保持 函数 跟 外部的交互 只有 参数 和 返回值 2. 在有参数的情况下,或者有数值输入的时候,要先进行错误判断. ...
- Maven学习 (六) 搭建多模块企业级项目
首先,前面几次学习已经学会了安装maven,如何创建maven项目等,最近的学习,终于有点进展了,搭建一下企业级多模块项目. 好了,废话不多说,具体如下: 首先新建一个maven项目,pom.xml的 ...
- JavaScript - 问题集 - 含function的json对象与json字符串之间相互转换
基本的转换为:JSON.parse与JSON.stringify. 但是json数据中含function,则转换后,function会丢失,如: var json={ test:'test', log ...