C. Marco and GCD Sequence
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

In a dream Marco met an elderly man with a pair of black glasses. The man told him the key to immortality and then disappeared with the wind of time.

When he woke up, he only remembered that the key was a sequence of positive integers of some length n, but forgot the exact sequence. Let the elements of the sequence be a1, a2, ..., an. He remembered that he calculated gcd(ai, ai + 1, ..., aj) for every1 ≤ i ≤ j ≤ n and put it into a set Sgcd here means the greatest common divisor.

Note that even if a number is put into the set S twice or more, it only appears once in the set.

Now Marco gives you the set S and asks you to help him figure out the initial sequence. If there are many solutions, print any of them. It is also possible that there are no sequences that produce the set S, in this case print -1.

Input

The first line contains a single integer m (1 ≤ m ≤ 1000) — the size of the set S.

The second line contains m integers s1, s2, ..., sm (1 ≤ si ≤ 106) — the elements of the set S. It's guaranteed that the elements of the set are given in strictly increasing order, that means s1 < s2 < ... < sm.

Output

If there is no solution, print a single line containing -1.

Otherwise, in the first line print a single integer n denoting the length of the sequence, n should not exceed 4000.

In the second line print n integers a1, a2, ..., an (1 ≤ ai ≤ 106) — the sequence.

We can show that if a solution exists, then there is a solution with n not exceeding 4000 and ai not exceeding 106.

If there are multiple solutions, print any of them.

Examples
input
4
2 4 6 12
output
3
4 6 12
input
2
2 3
output
-1
Note

In the first example 2 = gcd(4, 6), the other elements from the set appear in the sequence, and we can show that there are no values different from 2, 4, 6 and 12 among gcd(ai, ai + 1, ..., aj) for every 1 ≤ i ≤ j ≤ n.

【题意】:给你S数列。让你再构造一个数列,使得该数列内gcd(ai, ai + 1, ..., aj) 都出现在S。

【分析】:如果最小元素不是给定集合的GCD,则答案为-1,否则,我们可以在集合的两个连续元素之间插入最小元素。序列长度为2n-1,满足约束条件。

//要求所有之间的gcd都在集合中,所以答案的所有元素的gcd必须在集合中。 此外,gcd(a,b)<= min(a,b),所以答案中所有元素的gcd必须是集合中最小的数字,所以每个数字必须将其分开。那么只需在原数列的相邻两个数ai,ai+1中插入原序列最小的数就这样可以保证gcd不是自己,就是最小的数

【代码】:

#include <bits/stdc++.h>

using namespace std;
typedef long long LL;
const int maxn = ; int a[maxn];
int main()
{
int n;
scanf("%d",&n);
for(int i=;i<=n;i++) scanf("%d",a+i);
if(n==)
{
printf("1\n%d",a[]);
return ;
} int ok=; for(int i=;i<=n;i++)
if(a[i]%a[]!=)
{
ok=;
break;
}
//2 3
if(!ok)//如果最小元素不是给定集合的GCD,则答案为-1
{
printf("-1");
return ;
} printf("%d\n",(n-)*);//否则,我们可以在集合的两个连续元素之间插入最小元素。序列长度为2n-1,满足约束条件。
for(int i=;i<=n;i++) printf("%d %d ",a[],a[i]);
return ;
}

数学构造

Codeforces Round #447 (Div. 2) C. Marco and GCD Sequence【构造/GCD】的更多相关文章

  1. Codeforces Round #529 (Div. 3) E. Almost Regular Bracket Sequence (思维)

    Codeforces Round #529 (Div. 3) 题目传送门 题意: 给你由左右括号组成的字符串,问你有多少处括号翻转过来是合法的序列 思路: 这么考虑: 如果是左括号 1)整个序列左括号 ...

  2. Codeforces Round #447 (Div. 2) 题解 【ABCDE】

    BC都被hack的人生,痛苦. 下面是题解的表演时间: A. QAQ "QAQ" is a word to denote an expression of crying. Imag ...

  3. Codeforces Round #447 (Div. 2)

    我感觉这场CF还是比较毒的,虽然我上分了... Problem A  QAQ 题目大意:给你一个由小写字母构成的字符串,问你里面有多少个QAQ. 思路:找字符串中的A然后找两边的Q即可,可以枚举找Q, ...

  4. 【Codeforces Round #447 (Div. 2) C】Marco and GCD Sequence

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 把gcd(a[1..n])放在输入的n个数之间. [代码] /* 1.Shoud it use long long ? 2.Have ...

  5. Codeforces Round #447 (Div. 2) B. Ralph And His Magic Field 数学

    题目链接 题意:给你三个数n,m,k;让你构造出一个nm的矩阵,矩阵元素只有两个值(1,-1),且满足每行每列的乘积为k,问你多少个矩阵. 解法:首先,如果n,m奇偶不同,且k=-1时,必然无解: 设 ...

  6. Codeforces Round #447 (Div. 2) 题解

    A.很水的题目,3个for循环就可以了 #include <iostream> #include <cstdio> #include <cstring> using ...

  7. Codeforces Round #447 (Div. 2) C 构造

    现在有一个长度为n的数列 n不超过4000 求出它的gcd生成set 生成方式是对<i,j> insert进去(a[i] ^ a[i+1] ... ^a[j]) i<=j 然而现在给 ...

  8. Codeforces Round #447 (Div. 2) B. Ralph And His Magic Field【数论/组合数学】

    B. Ralph And His Magic Field time limit per test 1 second memory limit per test 256 megabytes input ...

  9. Codeforces Round #447 (Div. 2) A. QAQ【三重暴力枚举】

    A. QAQ time limit per test 1 second memory limit per test 256 megabytes input standard input output ...

随机推荐

  1. 牛客网暑期ACM多校训练营(第一场):J-Different Integers(分开区间不同数+树状数组)

    链接:J-Different Integers 题意:给出序列a1, a2, ..., an和区间(l1, r1), (l2, r2), ..., (lq, rq),对每个区间求集合{a1, a2, ...

  2. 洛谷P1071潜伏者(提高组)

    题目描述 R国和S国正陷入战火之中,双方都互派间谍,潜入对方内部,伺机行动.历尽艰险后,潜伏于S国的R 国间谍小C终于摸清了 S 国军用密码的编码规则: 1. S国军方内部欲发送的原信息经过加密后在网 ...

  3. excel模板解析—桥接模式:分离解析模板和业务校验

    在做excel模板解析的时候,其实会有两个部分,第一,将模板读取出来,校验一些必录项等. 但除了这些,在数据真正被业务线使用的时候,还会有一些其他的校验,比如说:根据业务,年龄是不能超过多少岁的,包括 ...

  4. 有向图强连通分量Tarjan算法

    在https://www.byvoid.com/zhs/blog/scc-tarjan中关于Tarjan算法的描述非常好,转述如下: 首先解释几个概念: 有向图强连通分量:在有向图G中,如果两个顶点间 ...

  5. jQuery选择器之类选择器

    类选择器,顾名思义,通过class样式类名来获取节点. 描述: $('.class') 类选择器,相对于id选择器来说,效率相对会低一些,但是优势就是可以多选. 同样的jQuery在实现上,对于类选择 ...

  6. 实用JS系列——面向对象中的类和继承

    背景: 在最开始学习JavaScript时,我们就知道,它是一种脚本语言,也有面向对象机制.但它的面向对象继承机制是基于原型的,即Prototype.今天,我们就来找一下JS中OO的影子. 创建类 1 ...

  7. BZOJ 2730:[HNOI2012]矿场搭建(割点+连通块)

    [HNOI2012]矿场搭建 Description 煤矿工地可以看成是由隧道连接挖煤点组成的无向图.为安全起见,希望在工地发生事故时所有挖煤点的工人都能有一条出路逃到救援出口处.于是矿主决定在某些挖 ...

  8. JAVA File方法各类文件复制操作

    import java.io.*; public class AllFile { public static void main(String[] args) throws Exception {// ...

  9. Audio Unit 介绍

    关于 Audio Unit iOS 提供了音频处理插件,支持混音,声音均衡,格式转化,以及用于录音,回放,离线渲染,实时对话的输入输出.可以动态载入和使用这些强大而灵活的插件,在 iOS 应用中这些插 ...

  10. git可视化工具相关资源

    TortoiseGit下载及其使用 TortoiseGit是一个开源项目,熟悉svn版本控制系统的小伙伴可能知道TorToisesvn.  下载:https://tortoisegit.org/dow ...