Pandas 数据结构Series:基本概念及创建
Series:"一维数组"
1. 和一维数组的区别
# Series 数据结构
# Series 是带有标签的一维数组,可以保存任何数据类型(整数,字符串,浮点数,Python对象等),轴标签统称为索引 s = pd.Series(np.random.rand(5))
print(s) #从输出可见区别于数组,有了标签。Series = 一维数组+标签组成
print(type(s))
# 查看数据、数据类型 print(s.index,type(s.index))
print(s.values,type(s.values))
# .index查看series索引,类型为rangeindex
# .values查看series值,类型是ndarray # 核心:series相比于ndarray,是一个自带索引index的数组 → 一维数组 + 对应索引
# 所以当只看series的值的时候,就是一个ndarray
# series和ndarray较相似,索引切片功能差别不大
# series和dict相比,series更像一个有顺序的字典(dict本身不存在顺序),其索引原理与字典相似(一个用key,一个用index)
运行结果:
0 0.732950
1 0.147740
2 0.219600
3 0.038931
4 0.910124
dtype: float64
<class 'pandas.core.series.Series'>
RangeIndex(start=0, stop=5, step=1) <class 'pandas.core.indexes.range.RangeIndex'>
[0.73295047 0.14774017 0.21959958 0.03893087 0.9101244 ] <class 'numpy.ndarray'>
2. 标签可以多元化,不一定为数字
import pandas as pd
S = pd.Series([99,66,78],index = ['Jone','Tom','James'])
print(S)
print(S.loc['James']) # 用标签去求对应的值
print(S.iloc[0]) #后面会讲
输出:
Jone 99
Tom 66
James 78
dtype: int64
78
99
3. Series 的创建方法:
(1)由字典创建
# Series 创建方法一:由字典创建,字典的key就是index,values就是values dic = {'a':1 ,'b':2 , 'c':3, '':4, '':5}
s = pd.Series(dic)
print(s)
# 注意:key肯定是字符串,假如values类型不止一个会怎么样? → dic = {'a':1 ,'b':'hello' , 'c':3, '4':4, '5':5}
#如果值有一个是字符串,那么全都是字符串类型的了
输出结果:
4 4
5 5
a 1
b 2
c 3
dtype: int64
(2)由一维数组创建
# Series 创建方法二:由数组创建(一维数组) arr = np.random.randn(5)
s = pd.Series(arr)
print(arr)
print(s)
# 默认index是从0开始,步长为1的数字 s = pd.Series(arr, index = ['a','b','c','d','e'],dtype = np.object)
print(s)
# index参数:设置index,长度保持一致
# dtype参数:设置数值类型
输出结果:
[-2.56328023 0.87233579 0.47630666 1.91715736 -1.26924024]
0 -2.563280
1 0.872336
2 0.476307
3 1.917157
4 -1.269240
dtype: float64
a -2.56328
b 0.872336
c 0.476307
d 1.91716
e -1.26924
dtype: object
(3)由序列创建
s = pd.Series([11,22,12,56,78,31]) #由序列创建
s
输出结果:
0 11
1 22
2 12
3 56
4 78
5 31
dtype: int64
4. 名称属性:“name"
# Series 名称属性:name s1 = pd.Series(np.random.randn(5))
print(s1)
print('-----')
s2 = pd.Series(np.random.randn(5),name = 'test')
print(s2)
print(s1.name, s2.name,type(s2.name))
# name为Series的一个参数,创建一个数组的 名称
# .name方法:输出数组的名称,输出格式为str,如果没用定义输出名称,输出为None s3 = s2.rename('hehehe')
print(s3)
print(s3.name, s2.name)
# .rename()重命名一个数组的名称,并且新指向一个数组,原数组不变
输出结果:
0 -1.285306
1 -0.586416
2 -1.966362
3 -1.507387
4 0.622088
dtype: float64
-----
0 -0.763427
1 -1.588831
2 -1.676116
3 0.453159
4 -0.874990
Name: test, dtype: float64
None test <class 'str'>
0 -0.763427
1 -1.588831
2 -1.676116
3 0.453159
4 -0.874990
Name: hehehe, dtype: float64
hehehe test
小练习:分别由字典、数组的方式,创建以下要求的Series
import pandas as pd
#(1)用字典创建
dic = {'Jack0':90,'Marry':92.,'Tom':89.0,'Zack':65.}
d = pd.Series(dic,name = '作业1')
print(d,'\n') #(2)直接写
s = pd.Series([90.0,92.0,89.0,65.0],index = ['Jack','Marry','Tom','Zack'],name = "作业1")
print(s)
Pandas 数据结构Series:基本概念及创建的更多相关文章
- 利用pandas进行数据分析之一:pandas数据结构Series
Series是一种类似于一维数组的对象,又一组数据(各种Numpy数据类型)以及一组与之相关的数据标签(即是索引)组成. 可以将Series看成是一个定长的有序字段,因为它是索引值到数据值的一个映射. ...
- 02. Pandas 1|数据结构Series、Dataframe
1."一维数组"Series Pandas数据结构Series:基本概念及创建 s.index . s.values # Series 数据结构 # Series 是带有标签的一 ...
- Pandas之Series
# Series 数据结构 # Series 是带有标签的一维数组,可以保存任何数据类型(整数,字符串,浮点数,Python对象等),轴标签统称为索引 import numpy as np impor ...
- 03. Pandas数据结构
03. Pandas数据结构 Series DataFrame 从DataFrame中查询出Series 1. Series Series是一种类似于一维数组的对象,它由一组数据(不同数据类型)以及一 ...
- Pandas 数据结构Dataframe:基本概念及创建
"二维数组"Dataframe:是一个表格型的数据结构,包含一组有序的列,其列的值类型可以是数值.字符串.布尔值等. Dataframe中的数据以一个或多个二维块存放,不是列表.字 ...
- pandas 学习(1): pandas 数据结构之Series
1. Series Series 是一个类数组的数据结构,同时带有标签(lable)或者说索引(index). 1.1 下边生成一个最简单的Series对象,因为没有给Series指定索引,所以此时会 ...
- pandas数据结构:Series/DataFrame;python函数:range/arange
1. Series Series 是一个类数组的数据结构,同时带有标签(lable)或者说索引(index). 1.1 下边生成一个最简单的Series对象,因为没有给Series指定索引,所以此时会 ...
- pandas中数据结构-Series
pandas中数据结构-Series pandas简介 Pandas是一个开源的,BSD许可的Python库,为Python编程语言提供了高性能,易于使用的数据结构和数据分析工具.Python与Pan ...
- Pandas初体验之数据结构——Series和DataFrame
Pandas是为了解决数据分析任务而创建的,纳入了大量的库和标准数据模型,提供了高效地操作大型数据集所需的工具. 对于Pandas包,在Python中常见的导入方法如下: from pandas im ...
随机推荐
- CentOS 6.5下安装Tomcat --专业增强版 非yum
Tomcat安装 通常情况下我们要配置Tomcat是很容易的一件事情,但是如果您要架设多用户多服务的Java虚拟主机就不那么容易了.其中最大的一个问题就是Tomcat执行权限.普通方式配置的Tomca ...
- iview 中 select 值不对
<Select v-model="formValidate.departmentId" @on-change="selectDepartment"> ...
- SVN中建立项目
下午建个svn的时候,出错,有个东西配置错了,晚上google看到一篇文章,觉得作者写的不错,而且很用心,转来共享. [转至]5分钟快速建立项目版本控制 – Face Code,Brain bloom ...
- Android开发由eclipse转Android Studio中一些常见出错问题解决方法
1.给一个Activity添加了一个Dialog主题,结果出现了下面的问题,在eclipse却没有出错 <activity android:name=".DialogActivity& ...
- Git学习笔记day01 从GitHub克隆版本库
本期Git教程将会带您进入Git的世界,这是您使用分布版本控制工具Git的开端,祝您学习顺利! 步骤一 在Linux系统中下载Git 如果是Ubuntu系统,在shell中输入指令 sudo apt ...
- php的yii框架开发总结6
MVC中的Controller部分,所有的controller类都是继承自Controller基类,基类里面包含actionAdmin-管理员,actionIndex-一般默认显示,actionVie ...
- 类型信息(RTTI和反射)——反射
运行时类型信息可以让你在程序运行时发现和使用类型信息. 在Java中运行时识别对象和类的信息有两种方式:传统的RTTI,以及反射.下面就来说说反射. 重点说说通过反射获取方法以及调用方法,即类方法提取 ...
- 探讨下在Delphi里面进程之间的数据共享
进程是一个具有一定独立功能的程序关于某个数据集合的一次运行活动.它是操作系统动态执行的基本单元,在传统的操作系统中,进程既是基本的分配单元,也是基本的执行单元.现在小编就和大家来探讨一下在Delphi ...
- 笨办法学Python(三十五)
习题 35: 分支和函数 你已经学会了 if 语句.函数.还有列表.现在你要练习扭转一下思维了.把下面的代码写下来,看你是否能弄懂它实现的是什么功能. from sys import exit def ...
- ring0 SSDTHook 实现x64/x86
#include "HookSSDT.h" #include <ntimage.h> #define SEC_IMAGE 0x001000000 ULONG32 __N ...