题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2431

题意:

  给定n,k,问你有多少个由1~n组成的排列,使得逆序对个数恰好为k个。

题解:

  表示状态:

    dp[i][j] = num of sequences

    i:已经用了1~i之间的数(在这一步放了数字i)

    j:逆序对个数为j

  找出答案:

    ans = dp[n][k]

  如何转移:

    在当前这一步要放数字i。

    所以要将i插入一个由1~i-1组成的排列中。

    若将i插入位置x(0 <= x <= i-1),则新添的逆序对个数为x。

    所以:

      dp[i][j] = ∑ dp[i-1][j-x]

    即:

      dp[i][j] = ∑ dp[i-1][j-i+1 to j]

    由于裸dp复杂度为O(N^3) = O(10^9),所以加一个前缀和优化。

  边界条件:

    dp[1][0] = 1

    others = 0

AC Code:

 // state expression:
// dp[i][j] = num of sequences
// i: considered number i
// j: there is j inversion pairs
//
// find the answer:
// ans = dp[n][k]
//
// transferring:
// dp[i][j] = sigma dp[i-1][j-i+1 to j]
//
// boundary:
// dp[1][0] = 1
#include <iostream>
#include <stdio.h>
#include <string.h>
#define MAX_N 1005
#define MAX_K 1005
#define MOD 10000 using namespace std; int n,t;
int dp[MAX_N][MAX_K];
int sum[MAX_N][MAX_K]; void read()
{
cin>>n>>t;
} void update_sum(int i,int j,int a)
{
if(j==) sum[i][j]=a;
else sum[i][j]=(sum[i][j-]+a)%MOD;
} int query_sum(int i,int x,int y)
{
if(x==) return sum[i][y];
else return ((sum[i][y]-sum[i][x-])%MOD+MOD)%MOD;
} void solve()
{
memset(dp,,sizeof(dp));
memset(sum,,sizeof(sum));
dp[][]=;
for(int i=;i<=t;i++)
{
sum[][i]=;
}
for(int i=;i<=n;i++)
{
for(int j=;j<=t;j++)
{
dp[i][j]=query_sum(i-,max(,j-i+),j);
update_sum(i,j,dp[i][j]);
}
}
} void print()
{
cout<<dp[n][t]<<endl;
} int main()
{
read();
solve();
print();
}

BZOJ 2431 [HAOI2009]逆序对数列:dp 逆序对的更多相关文章

  1. BZOJ 2431: [HAOI2009]逆序对数列( dp )

    dp(i,j)表示1~i的全部排列中逆序对数为j的个数. 从1~i-1的全部排列中加入i, 那么可以产生的逆序对数为0~i-1, 所以 dp(i,j) = Σ dp(i-1,k) (j-i+1 ≤ k ...

  2. BZOJ 2431 逆序对数列 DP

    2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec Memory Limit: 128 MB Description 对于一个数列{ai},如果有i< j且ai> ...

  3. BZOJ 2431: [HAOI2009]逆序对数列【dp】

    Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数.那么逆序 ...

  4. Bzoj 2431 HAOI2009 逆序对数列

    Description 对于一个数列{ai},如果有i**<**j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数. ...

  5. [bzoj 2431][HAOI2009]逆序对数列(递推+连续和优化)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2431 分析: f(i,j)表示前i个数字逆序对数目为j时候的方案数 那么有f(i,j) ...

  6. BZOJ2431:[HAOI2009]逆序对数列(DP,差分)

    Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆 ...

  7. 【bzoj2431】[HAOI2009]逆序对数列 dp

    题目描述 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆序对数为k的这 ...

  8. [bzoj2431][HAOI2009][逆序对数列] (dp计数)

    Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆 ...

  9. 【BZOJ2431】【HAOI2009】逆序对数列 DP

    题目大意 问你有多少个由\(n\)个数组成的,逆序对个数为\(k\)的排列. \(n,k\leq 1000\) 题解 我们考虑从小到大插入这\(n\)个数. 设当前插入了\(i\)个数,插入下一个数可 ...

随机推荐

  1. smarty模版使用php标签,如何获取模版变量

    smarty模版使用php标签,如何获取模版变量 in: 后端程序 已经assign一个模版变量$assign,由于要做特殊的循环输出,使用for循环,因此使用到了php标签,但是php语句和模版语句 ...

  2. centos6.5安装Apache+MySQL+PHP

    一.安装 MySQL 首先来进行 MySQL 的安装.打开超级终端,输入: [root@localhost ~]# yum install mysql mysql-server 安装完毕,让 MySQ ...

  3. eclipse maven 依赖jar下载失败解决办法

    针对PC与Maven私服之间网络传输问题 打开.m2本地仓库所在目录, 通过win文件夹的搜索功能,查找 *.lastUpdated ,然后将找到的文件全部删除 重新 Maven Update Pro ...

  4. 使用虚拟环境 virtualenv

    1.安装 $ sudo apt-get install python-virtualenv 2.重命名,一般虚拟环境会被命名为venv $ virtualenv   venv 3. 激活 $ sour ...

  5. linux下LAMP环境搭建

    ++++++++++++++++++++++++++++++++++++++++++++++ linux下LAMP环境搭建 ++++++++++++++++++++++++++++++++++++++ ...

  6. php党 强烈推荐TIPI:深入理解PHP内核

    深入理解PHP内核(Thinking In PHP Internals) TIPI项目是一个自发项目, 项目主要关注PHP的内部实现, 以及PHP相关的方方面面, 该项目包括<深入理解PHP内核 ...

  7. C语言基础知识【函数】

    C 函数1.函数是一组一起执行一个任务的语句.每个 C 程序都至少有一个函数,即主函数 main() ,所有简单的程序都可以定义其他额外的函数.您可以把代码划分到不同的函数中.如何划分代码到不同的函数 ...

  8. (一)unity4.6Ugui中文教程文档-------概要

    大家好,我是孙广东.   转载请注明出处:http://write.blog.csdn.net/postedit/38922399 更全的内容请看我的游戏蛮牛地址:http://www.unityma ...

  9. 研究怎么运用xcode处理常见的调试问题

    本文转载至 http://blog.csdn.net/zhuzhihai1988/article/details/7749022 所谓磨刀不误砍柴工,这里菜鸟我在研究怎么运用xcode处理常见的调试问 ...

  10. 怎样查看电脑登录过的wifi密码?

    https://jingyan.baidu.com/album/fcb5aff770f7e6edaa4a71d9.html?picindex=7