洛谷P3803 【模板】多项式乘法(FFT)
P3803 【模板】多项式乘法(FFT)
题目背景
这是一道FFT模板题
题目描述
给定一个n次多项式F(x),和一个m次多项式G(x)。
请求出F(x)和G(x)的卷积。
输入输出格式
输入格式:
第一行2个正整数n,m。
接下来一行n+1个数字,从低到高表示F(x)的系数。
接下来一行m+1个数字,从低到高表示G(x))的系数。
输出格式:
一行n+m+1个数字,从低到高表示F(x)∗G(x)的系数。
输入输出样例
说明
保证输入中的系数大于等于 0 且小于等于9。
对于100%的数据: n, m \leq {10}^6n,m≤106, 共计20个数据点,2s。
数据有一定梯度。
空间限制:256MB
/*fft模板*/
#include<iostream>
#include<cstdio>
#include<cmath>
#define maxn 4000010
#define PI (acos(-1.0))
using namespace std;
int rd[maxn];
struct node{
double x,y;
node (double a=,double b=):x(a),y(b){}
node operator + (const node &p)
{return node (x+p.x,y+p.y);}
node operator - (const node &p)
{return node (x-p.x,y-p.y);}
node operator * (const node &p)
{return node (x*p.x-y*p.y,x*p.y+y*p.x);}
node operator / (const double &p)
{return node (x/p,y/p);}
}a[maxn],b[maxn];
void fft(node *a,int N,int f){
node wn,w,x,y;int i;
for(i=;i<N;i++)
if(rd[i]>i)swap(a[i],a[rd[i]]);
for(int k=;k<N;k<<=){
wn=node(cos(PI/k),f*sin(PI/k));
for(int j=;j<N;j+=k<<)
for(w=node(,),i=;i<k;i++,w=w*wn){
x=a[i+j];
y=a[i+j+k]*w;
a[i+j]=x+y;
a[i+j+k]=x-y;
}
}
if(f==-)for(int i=;i<N;i++)a[i]=a[i]/N;
}
int main(){
freopen("Cola.txt","r",stdin);
int N,M;
scanf("%d%d",&N,&M);
for(int i=;i<=N;i++)scanf("%lf",&a[i].x);
for(int i=;i<=M;i++)scanf("%lf",&b[i].x);
M=N+M;N=;int l=;
while(N<=M)N<<=,l++;
for(int i=;i<N;i++)rd[i]=(rd[i>>]>>)|((i&)<<(l-));//进行反转
fft(a,N,),fft(b,N,);
for(int i=;i<N;i++)a[i]=a[i]*b[i];
fft(a,N,-);
for(int i=;i<=M;i++)
printf("%d ",int(a[i].x+0.5));
return ;
}
洛谷P3803 【模板】多项式乘法(FFT)的更多相关文章
- 洛谷.3803.[模板]多项式乘法(FFT)
题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...
- 洛谷.3803.[模板]多项式乘法(NTT)
题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...
- P3803 [模板] 多项式乘法 (FFT)
Rt 注意len要为2的幂 #include <bits/stdc++.h> using namespace std; const double PI = acos(-1.0); inli ...
- 洛谷.4512.[模板]多项式除法(NTT)
题目链接 多项式除法 & 取模 很神奇,记录一下. 只是主要部分,更详细的和其它内容看这吧. 给定一个\(n\)次多项式\(A(x)\)和\(m\)次多项式\(D(x)\),求\(deg(Q) ...
- 洛谷.4238.[模板]多项式求逆(NTT)
题目链接 设多项式\(f(x)\)在模\(x^n\)下的逆元为\(g(x)\) \[f(x)g(x)\equiv 1\ (mod\ x^n)\] \[f(x)g(x)-1\equiv 0\ (mod\ ...
- 洛谷 P4512 [模板] 多项式除法
题目:https://www.luogu.org/problemnew/show/P4512 看博客:https://www.cnblogs.com/owenyu/p/6724611.html htt ...
- 洛谷 P4238 [模板] 多项式求逆
题目:https://www.luogu.org/problemnew/show/P4238 看博客:https://www.cnblogs.com/xiefengze1/p/9107752.html ...
- FFT/NTT总结+洛谷P3803 【模板】多项式乘法(FFT)(FFT/NTT)
前言 众所周知,这两个东西都是用来算多项式乘法的. 对于这种常人思维难以理解的东西,就少些理解,多背板子吧! 因此只总结一下思路和代码,什么概念和推式子就靠巨佬们吧 推荐自为风月马前卒巨佬的概念和定理 ...
- 洛谷p3803 FFT入门
洛谷p3803 FFT入门 ps:花了我一天的时间弄懂fft的原理,感觉fft的折半很神奇! 大致谈一谈FFT的基本原理: 对于两个多项式的卷积,可以O(n^2)求出来(妥妥的暴力) 显然一个多项式可 ...
- 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...
随机推荐
- 分享知识-快乐自己:Liunx 搭建 Dubbo
1.首先配置JDK 操作步骤 2.部署 Tomcat ① 上传 Tomcat 7 解压jdk文件:tar -zxvf jdk文件名称 ② tomcat目录下的bin/启动tomcat ③ tail ...
- 【Educational Codeforces Round 37】F. SUM and REPLACE 线段树+线性筛
题意 给定序列$a_n$,每次将$[L,R]$区间内的数$a_i$替换为$d(a_i)$,或者询问区间和 这题和区间开方有相同的操作 对于$a_i \in (1,10^6)$,$10$次$d(a_i) ...
- linux apt-get remove如何恢复
linux卸载或删除软件时,若不小心删除到关联的软件,如果想撤销删除操作需要在/var/log/apt/history.log中依次安装删除的软件,具体操作如下: $echo '#!/bin/bash ...
- Java 实现 JS的eval函数
JS的eval 函数, 给个表达式做参数, 返回表达式的值. Java的脚本引擎可以实现这个功能. 例子: 拼接一个字符串 \uxxxx, Unicode的十六进制编码, 然后把它打印出来. 即输 ...
- C语言小程序(七)、石头剪刀布
本来挺简单的一个程序,但突然想把<Friends>给糅合进去,就多花了一些心思,这是我写过最有趣的程序了. #include <stdio.h> #include <st ...
- log4net调试
public delegate void LogReceivedEventHandler(object source, LogReceivedEventArgs e); public sealed c ...
- [BZOJ2806][CTSC2012]熟悉的文章(Cheat)
bzoj luogu 题目描述 阿米巴是小强的好朋友. 在小强眼中,阿米巴是一个作文成绩很高的文艺青年.为了获取考试作文的真谛,小强向阿米巴求教.阿米巴给小强展示了几篇作文,小强觉得这些文章怎么看怎么 ...
- nodejs 上传图片(服务端输出全部代码)
下面代码,全部都是nodejs端的,不用客户端代码.也就是,选择图片的form表单以及上传完毕预览图片的html,都是由node服务端输出的. 1 启动代码:(node upload.js) var ...
- PG degraded实验
1. 创建一个文件,并把该文件作为对象放到集群中: [root@node1 ~]# echo "this is test! " >>test.txt [root@nod ...
- JavaScript接口
JavaScript中实现接口的方法有三种: 第一种,使用注释的方法实现接口 特点:(1)最简单,但是功能最弱(2)利用 interface和 implement"文字"(3)把他 ...