Kalman Filter是一个高效的递归滤波器,它可以实现从一系列的噪声测量中,估 计动态系统的状态。广泛应用于包含Radar、计算机视觉在内的等工程应用领域,在控制理论和控制系统工程中也是一个非常重要的课题。连同线性均方规划,卡尔曼滤波器可以用于解决LQG(Linear-quadratic-Gaussian control)问题。卡尔曼滤波器,线性均方归化及线性均方高斯控制器,是大部分控制领域基础难题的主要解决途径。

目录

■    1     应用实例

■    2    命名和发展历史

■    3    基本动态系统模型

■    4    卡尔曼滤波器

4.1    预测

4.2    更新

4.3    不变量

■    5    实例

■    6    推导

6.1    后验估计协方差矩阵推导

6.2    Kalman 增益推导

6.3    后验误差协方差矩阵简化

■    7    信息滤波

■    8  非线性滤波器

8.1   扩展Kalman 滤波

8.2   Unscented Kalman filter

■    9   Kalman-Bucy滤波

■    10  应用

■    11  参见

■    12  参考文献

■    13  外部链接

■    1    应用实例

一个简单的应用是估计物体的位置和速度;简要描述如下:假设我们可以获取一个物体的包含噪声的一系列位置观测数据,我们可以获得此物体的精确速度和位置连续更新信息。

例如,对于雷达来说,我们关心的是跟踪目标,而目标的位置,速度,加速度的测量值是时刻含有误差的,卡尔曼滤波器利用目标的动态信息,去掉噪声影响,获取目标此刻好的位置估计(滤波),将来位置估计(预测),也可以是过去位置估计的(插值或平滑)

■    2    命名和发展历史

这个滤波器以它的发明者Rudolf.E.Kalman 而命名,但是在Kanlman之前,Thorvald Nicolai Thiele和Peter Swerling 已经提出了类似的算法。Stanley Schmidt 首次实现了Kalman滤波器。在一次对NASA Ames Research Center访问中,卡尔曼发现他的方法对于解决阿波罗计划的轨迹预测很有用,后来阿波罗飞船导航 电脑就使用了这种滤波器。这个滤波器可以追溯到Swerling(1958),Kalman(1960),Kalman和Bucy(1961)发表的论文。

这个滤波器有时叫做Stratonovich-Kalman-Bucy滤波器。因为更为一般的非线性滤波器最初由Ruslan L.Stratonovich发明,而Stratonovich-Kalman-Bucy滤波器只是非线性滤波器的一个特例。事实上,1960年夏季,Kalman和Stratonovich在一个Moscow召开的会议中相遇,而作为非线性特例的线性滤波方程,早已经由Stratonovich在此以前发表了。

在控制领域,Kalman滤波被称为线性二次型估计,目前,卡尔曼滤波已经有很多不同的实现,有施密特扩展滤波器、信息滤波器以及一系列的Bierman和Thornton 发明的平方根滤波器等,而卡尔曼最初提出的形式现在称为简单卡尔曼滤波器。也许最常见的卡尔曼滤波器应用是锁相环,它在收音机、计算机和几乎全部视频或通讯设备中广泛存在。

■   3    基本动态系统模型

Kalman滤波基于时域描述的线性动态系统,它的模型是Markov Chain,而Markov Chain建立在一个被高斯噪声干扰的线性算子之上。系统的状态可以用一个元素为实数的向量表示。 随着离散时间的增加,这个线性算子就会作用到当前状态之上,产生一个新的状态,并且会带入一定的噪声,同时一些已知的控制信息也会加入。同时另外一个受噪声干扰的线性算子将产生这些隐含状态的可见输出。Kalman 滤波可以被看作为类似隐马尔科夫模型,它们的显著不同点在于:隐状态变量的取值空间是一个连续的空间,而离散状态空间则不是;另为,隐马尔科夫模型可以描述下一个状态的一个任意分布,这也与应用于Kalman滤波器中的高斯噪声模型相反。Kalman滤波器方程和隐马尔科夫方程之间有很大的二重性,关于Kalman 滤波方程和隐马尔科夫方程之间二重性参看Roweis and Ghahramani(1999)[4]。

为了从一系列的噪声观测中,应用Kalman滤波估计观测过程的内部状态。我们必须把这个过程在Kalman 滤波器的框架下建立模型, 这就意味着,对于

每一步k  我们要定义矩阵 、 、 、 、 如下:

Kalman Filter 假设k 时刻的真实状态是从k-1时刻演化而来,符合下式

这里

■ 是作用在前一状态的状态转移模型(状态转移矩阵)

■  是作用在控制向量 上的控制输入模型(输入输出矩阵)

■ 是过程噪声,假设是均值为0的白噪声,协方差为 则:

在k时刻,假设真实状态 的观测, 满足如下公式:

其中 是观测模型(观测矩阵),它把真实状态映射到观测空间, 是观测噪声,假设它是均值是0,方差是 的高斯白噪声: 

Kalman Filter基本动态系统模型如图(1)所示,圆圈代表向量,方块代表矩阵,星号代表高斯噪声,其协方差在右下方标出。

初始状态以及每一时刻的噪声向量{x0, w1, ..., wk, v1 ... vk} 都为认为是互相独立的。实际中,真实世界中动态系统并不是严格的符合此模型。但是Kalman模型是设计在噪声过程工作的,一个近似的符合已经可以使这个滤波器非常有用了,更多复杂模型关于Kalman Filter模型的变种,将在下述中讨论:

图(1)

■    4    卡尔曼滤波器

Kalman Filter 是一个递归的估计,即只要获知上一时刻的状态估计和当前状态的观测就可以计算出当前状态的估计,不同于其他的估计技术,Kalman 滤波器不需要观测或/和估计的历史记录,Kalman Filter 是一个纯粹的时域滤波器,而不像低通滤波器等频域滤波器那样,需要在频域中设计,然后转换到时域中应用。

下面,代表已知从m到n-1包括m时刻的观测在n时刻的估计值

卡尔曼滤波器的状态由以下两个变量表示:

■ 已知k时刻以前时刻观测值,k时刻的状态估计值

■ 误差协方差矩阵,度量状态估计的精度程度

Kalman 滤波包括两个阶段:预测和更新;在估计阶段,滤波器应用上一状态的估计做出对当前状态的估计。在更新阶段,滤波器利用在当前状态的观测值优化预测阶段的预测值,以获的一个更精确的当前状态的估计。

4.1    预测

状态预测:

■ 

估计协方差预测:

4.2    更新

新息或测量余量

■ 

新息协方差

■ 

Kalman 增益

■ 

状态估计更新

■ 

状态协方差更新

■ 

使用上述公式计算 仅在最优卡尔曼增益的时候有效。使用其他增益公式要复杂一些,看见推导

4.3    不变量

如果模型准确, 和 值将准确反映最初状态的分布,那么下面所有不变量保持不变,所有估计的误差均值为0:

■ 

■ 

这里 表示 的期望,而协方差矩阵则反映的估计的协方差

■ 

■ 

■ 

【转】kalman滤波的更多相关文章

  1. 【滤波】标量Kalman滤波的过程分析和证明及C实现

    摘要: 标量Kalman滤波的过程分析和证明及C实现,希望能够帮助入门的小白,同时得到各位高手的指教.并不涉及其他Kalman滤波方法. 本文主要参考自<A Introduction to th ...

  2. 理解Kalman滤波的使用

    Kalman滤波简介 Kalman滤波是一种线性滤波与预测方法,原文为:A New Approach to Linear Filtering and Prediction Problems.文章推导很 ...

  3. (二). 细说Kalman滤波:The Kalman Filter

    本文为原创文章,转载请注明出处,http://www.cnblogs.com/ycwang16/p/5999034.html 前面介绍了Bayes滤波方法,我们接下来详细说说Kalman滤波器.虽然K ...

  4. 透过表象看本质!?之三——Kalman滤波

    数据拟合能够估计出数据变化的趋势,另外一个同等重要的应用是如何利用这一趋势,预测下一时刻数据可能的值.通俗点儿说,你观察苍蝇(蚊子,蜜蜂)飞了几秒,你也许会想“它下一个时刻可能在哪儿”,“呈现出什么样 ...

  5. 终于理解kalman滤波

    2017拜拜啦,怎么过元旦呢?当然是果断呆实验室过... 应该是大二的时候首次听说kalman,一直到今天早上,我一看到其5条"黄金公式",就会找各种理由放弃,看不懂呀...但是研 ...

  6. kalman滤波

    kalman滤波原理(通俗易懂) 1. 在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”.跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人 ...

  7. Kalman滤波学习

    两个过程: 预测过程和更新过程 1.基本原理 2.IMU应用Kalman滤波求角速度. https://github.com/jjundot/MPU6050_Kalman

  8. 目标跟踪之卡尔曼滤波---理解Kalman滤波的使用预测

    Kalman滤波简介 Kalman滤波是一种线性滤波与预测方法,原文为:A New Approach to Linear Filtering and Prediction Problems.文章推导很 ...

  9. OpenCV: kalman滤波的代码段

    序言:在我的疲劳检测工程 AviTest中!显示框为320*240,使用OpenCV的kalman滤波算法,可以实现简单的锁相追踪-实现对眼球的位置锁定. 代码如下: CvPoint Wishchin ...

随机推荐

  1. Java种八种常用排序算法

    1 直接插入排序 经常碰到这样一类排序问题:把新的数据插入到已经排好的数据列中. 将第一个数和第二个数排序,然后构成一个有序序列 将第三个数插入进去,构成一个新的有序序列. 对第四个数.第五个数……直 ...

  2. Android布局中 android:layout_gravity="bottom"为何不起作用?

    在android布局时我们有时会需要将位于LinearLayout布局中的控件放在布局底部,或者是同时想将几个控件底部对齐,此时我们自然会想到使用 android:layout_gravity=&qu ...

  3. MySQL四-1:数据类型

    阅读目录 一 介绍 二 数值类型 三 日期类型 四 字符串类型 五 枚举类型与集合类型 一 介绍 存储引擎决定了表的类型,而表内存放的数据也要有不同的类型,每种数据类型都有自己的宽度,但宽度是可选的 ...

  4. [译]GLUT教程 - 整合代码7

    Lighthouse3d.com >> GLUT Tutorial >> Extras >> The Code So Far VII 以下是子窗体的最终版本代码. ...

  5. NHibernate 延迟加载与立即加载 (第七篇)

    NHibernate 延迟加载与立即加载 (第七篇) 一.延迟加载 延迟加载可以理解为:当需要用的时候才加载. 假设我们数据库有一个Person对象,一个Country对象,其中Person属于Cou ...

  6. JavaScript_DOM编程艺术第二版[阅]

    前两年迫于项目的需要,只是拿来JQuery用到项目中,并没有实质上理解javascript(貌似其他人也是这么干的)~ 随着最近几年,得益于Nodejs, React, Vue等,javascript ...

  7. shiro自定义拦截url

    在实际项目上,我们针对不同的用户(guste,user,admin,mobile user)等等,需要进入不同的页面,比如,手机端用户需要进入Mobile/这个路径下的,这个时候,我们需要自定义拦截u ...

  8. jq bootstrap select 点击不能动弹

    jq  bootstrap select 点击不能动弹   因为是样式selectpicker  冲突. 解决办法换 样式  form-control <select name="ty ...

  9. Android注解支持(Support Annotations) (转)

    原文地址:http://www.flysnow.org/2015/08/13/android-tech-docs-support-annotations.html 注解支持(Support Annot ...

  10. sql exist 优化查询时间

    1.非exist,查询需要20多秒 2.使用exist后 3.表连接也能优化