Havel-Hakimi定理(握手定理)
Havel-Hakimi定理(握手定理)
由非负整数组成的非增序列s(度序列):d1,d2,…,dn(n>=2,d1>=1)是可图的,当且仅当序列:
s1:d2 – 1,d3 – 1,…,dd1+1 – 1,dd1+2,…,dn
是可图的。序列s1中有n-1个非负整数,s序列中d1后的前d1个度数(即d2~dd1+1)减1后构成s1中的前d1个数。
说白了就是先把第一个点(度数为d1)连线到后面d1个点,保证第一个点度数满足,然后再以此类推考虑后面的点。如果后面所有顶点满足并且度数不多不少(最后不剩,过程中没有度数为负数),即可认为,度序列是可图的。
为什么每一次都要排成非递增序列后再操作?因为这样是最好判断的,最后都成0就可图,中途出现负数就不可图。如果不排成非递增就不好判断了,比如最后0,1,0,1是可图的;0,2,0,2不可图,还有各种最终情况,很难写代码去判断可图不可图。
由同一个可图序列构造出来的图不一定是唯一的。
例题poj1659
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<list>
#include<deque>
#include<vector>
#include<algorithm>
#include<stack>
#include<queue>
#include<cctype>
#include<sstream>
using namespace std;
#define pii pair<int,int>
#define LL long long int
const double eps=1e-;
const int INF=;
const int maxn=+; int ans[maxn][maxn];
int T,n;
struct node
{
int id,de;
} x[maxn]; bool cmp(node a,node b)
{
return a.de>b.de;
} int main()
{
//freopen("in1.txt","r",stdin);
//freopen("out.txt","w",stdout);
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(int i=; i<n; i++)
{
scanf("%d",&x[i].de);
x[i].id=i+;
}
memset(ans,,sizeof(ans));
int tn=n;
bool can=;
while(tn>)
{
sort(x,x+n,cmp);
if(x[].de==) break;
for(int i=; i<=x[].de; i++)
{
if(x[i].de>&&i<n)
{
x[i].de--;
ans[x[].id][x[i].id]=ans[x[i].id][x[].id]=;
}
else
{
can=false;
break;
}
}
if(can==false) break;
x[].de=;
tn--;
}
if(can==true)
{
puts("YES");
for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++)
{
if(j==) printf("%d",ans[i][j]);
else printf(" %d",ans[i][j]);
}
puts("");
}
}
else puts("NO");
if(T>=) puts("");
}
//fclose(stdin);
//fclose(stdout);
return ;
}
Havel-Hakimi定理(握手定理)的更多相关文章
- POJ1659 Frogs' Neighborhood(Havel–Hakimi定理)
题意 题目链接 \(T\)组数据,给出\(n\)个点的度数,问是否可以构造出一个简单图 Sol Havel–Hakimi定理: 给定一串有限多个非负整数组成的序列,是否存在一个简单图使得其度数列恰为这 ...
- 【bzoj1951】[Sdoi2010]古代猪文 费马小定理+Lucas定理+中国剩余定理
题目描述 求 $g^{\sum\limits_{k|n}C_{n}^{\frac nk}}\mod 999911659$ 输入 有且仅有一行:两个数N.G,用一个空格分开. 输出 有且仅有一行:一个 ...
- 【luogu P3807】【模板】卢卡斯定理/Lucas 定理(含 Lucas 定理证明)
[模板]卢卡斯定理/Lucas 定理 题目链接:luogu P3807 题目大意 求 C(n,n+m)%p 的值. p 保证是质数. 思路 Lucas 定理内容 对于非负整数 \(n\),\(m\), ...
- 矩阵树定理&BEST定理学习笔记
终于学到这个了,本来准备省选前学来着的? 前置知识:矩阵行列式 矩阵树定理 矩阵树定理说的大概就是这样一件事:对于一张无向图 \(G\),我们记 \(D\) 为其度数矩阵,满足 \(D_{i,i}=\ ...
- CSU 1805 Three Capitals(矩阵树定理+Best定理)
http://acm.csu.edu.cn/csuoj/problemset/problem?pid=1805 题意: A和B之间有a条边,A和G之间有b条边,B和G之间有c条边.现在从A点出发走遍所 ...
- [bzoj1951] [Sdoi2010]古代猪文 费马小定理+Lucas定理+CRT
Description "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久 ...
- 【bzoj2142】【礼物】拓展Lucas定理+孙子定理
(上不了p站我要死了,侵权度娘背锅) Description 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E 心目中的重要性不同,在小E心中分量 ...
- BZOJ1951 [Sdoi2010]古代猪文 【费马小定理 + Lucas定理 + 中国剩余定理 + 逆元递推 + 扩展欧几里得】
题目 "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久很久以前,在山的那 ...
- hdu 2685(数论相关定理+欧几里德定理+快速取模)
I won't tell you this is about number theory Time Limit: 2000/1000 MS (Java/Others) Memory Limit: ...
随机推荐
- java 对象占用内存查看 以及JVM级别 方法修改等
public interface Instrumentation 此类提供检测 Java 编程语言代码所需的服务.检测是向方法中添加字节码,以搜集各种工具所使用的数据.由于更改完全是进行添加,所以这些 ...
- saltstack之用户管理
1.添加用户 /srv/salt/top.sls base: 'test82.salt.cn': - user.useradd /srv/salt/user/useradd.sls jim: user ...
- vue构建完整项目-以及实现
简介 由于开发vue项目的时候,需要重新搭建项目的架子,比较麻烦,其实之前做过的项目好多都可以直接拿过来用,比如接下来的这个项目,就可以满足平常的vue单页面开发. 该项目包括了: 全局配置axios ...
- Android异步处理三:Handler+Looper+MessageQueue深入详解
在<Android异步处理一:使用Thread+Handler实现非UI线程更新UI界面>中,我们讲到使用Thread+Handler的方式来实现界面的更新,其实是在非UI线程发送消息到U ...
- C++中面向对象的理解
1.对于OO(面向对象)的含义,并非每一个人的看法都是同样的. 即使在如今.假设问十个人,可能会得到15种不同的答案.差点儿全部的人都会允许继承和多态是OO中的概念.大多数人还会再加上封装. 另 ...
- 纯JS实现动态时间
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- CSS中设置div垂直居中
在说到这个问题的时候,也许有人会问CSS中不是有vertical-align属性来设置垂直居中的吗?即使是某些浏览器不支持我只需做少许的CSS Hack技术就可以啊!所以在这里我还要啰嗦两句,CSS中 ...
- 【BZOJ3993】[SDOI2015]星际战争 二分+最大流
[BZOJ3993][SDOI2015]星际战争 Description 3333年,在银河系的某星球上,X军团和Y军团正在激烈地作战.在战斗的某一阶段,Y军团一共派遣了N个巨型机器人进攻X军团的阵地 ...
- git生成public key
1 配置user name和email git config --global user.name "xxx" git config --global user.email &qu ...
- 【python】-- SQLAlchemy操作MySQL
ORM.SQLAchemy orm英文全称object relational mapping,就是对象映射关系程序,简单来说就是类似python这种面向对象的程序来说一切皆对象,但是使用的数据库却都是 ...