cluster KMeans need preprocessing scale????
Out:
n_digits: 10, n_samples 1797, n_features 64
__________________________________________________________________________________
init time inertia homo compl v-meas ARI AMI silhouette
k-means++ 0.30s 69432 0.602 0.650 0.625 0.465 0.598 0.146
random 0.23s 69694 0.669 0.710 0.689 0.553 0.666 0.147
PCA-based 0.04s 70804 0.671 0.698 0.684 0.561 0.668 0.118
__________________________________________________________________________________
print(__doc__) from time import time
import numpy as np
import matplotlib.pyplot as plt from sklearn import metrics
from sklearn.cluster import KMeans
from sklearn.datasets import load_digits
from sklearn.decomposition import PCA
from sklearn.preprocessing import scale np.random.seed(42) digits = load_digits()
data = scale(digits.data) n_samples, n_features = data.shape
n_digits = len(np.unique(digits.target))
labels = digits.target sample_size = 300 print("n_digits: %d, \t n_samples %d, \t n_features %d"
% (n_digits, n_samples, n_features)) print(82 * '_')
print('init\t\ttime\tinertia\thomo\tcompl\tv-meas\tARI\tAMI\tsilhouette') def bench_k_means(estimator, name, data):
t0 = time()
estimator.fit(data)
print('%-9s\t%.2fs\t%i\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f'
% (name, (time() - t0), estimator.inertia_,
metrics.homogeneity_score(labels, estimator.labels_),
metrics.completeness_score(labels, estimator.labels_),
metrics.v_measure_score(labels, estimator.labels_),
metrics.adjusted_rand_score(labels, estimator.labels_),
metrics.adjusted_mutual_info_score(labels, estimator.labels_),
metrics.silhouette_score(data, estimator.labels_,
metric='euclidean',
sample_size=sample_size))) bench_k_means(KMeans(init='k-means++', n_clusters=n_digits, n_init=10),
name="k-means++", data=data) bench_k_means(KMeans(init='random', n_clusters=n_digits, n_init=10),
name="random", data=data) # in this case the seeding of the centers is deterministic, hence we run the
# kmeans algorithm only once with n_init=1
pca = PCA(n_components=n_digits).fit(data)
bench_k_means(KMeans(init=pca.components_, n_clusters=n_digits, n_init=1),
name="PCA-based",
data=data)
print(82 * '_') # #############################################################################
# Visualize the results on PCA-reduced data reduced_data = PCA(n_components=2).fit_transform(data)
kmeans = KMeans(init='k-means++', n_clusters=n_digits, n_init=10)
kmeans.fit(reduced_data) # Step size of the mesh. Decrease to increase the quality of the VQ.
h = .02 # point in the mesh [x_min, x_max]x[y_min, y_max]. # Plot the decision boundary. For that, we will assign a color to each
x_min, x_max = reduced_data[:, 0].min() - 1, reduced_data[:, 0].max() + 1
y_min, y_max = reduced_data[:, 1].min() - 1, reduced_data[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Obtain labels for each point in mesh. Use last trained model.
Z = kmeans.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.figure(1)
plt.clf()
plt.imshow(Z, interpolation='nearest',
extent=(xx.min(), xx.max(), yy.min(), yy.max()),
cmap=plt.cm.Paired,
aspect='auto', origin='lower') plt.plot(reduced_data[:, 0], reduced_data[:, 1], 'k.', markersize=2)
# Plot the centroids as a white X
centroids = kmeans.cluster_centers_
plt.scatter(centroids[:, 0], centroids[:, 1],
marker='x', s=169, linewidths=3,
color='w', zorder=10)
plt.title('K-means clustering on the digits dataset (PCA-reduced data)\n'
'Centroids are marked with white cross')
plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
plt.xticks(())
plt.yticks(())
plt.show()
It depends on your data.
If you have attributes with a well-defined meaning. Say, latitude and longitude, then you should not scale your data, because this will cause distortion. (K-means might be a bad choice, too - you need something that can handle lat/lon naturally)
If you have mixed numerical data, where each attribute is something entirely different (say, shoe size and weight), has different units attached (lb, tons, m, kg ...) then these values aren't really comparable anyway; z-standardizing them is a best-practise to give equal weight to them.
If you have binary values, discrete attributes or categorial attributes, stay away from k-means. K-means needs to compute means, and the mean value is not meaningful on this kind of data.
from:https://stats.stackexchange.com/questions/89809/is-it-important-to-scale-data-before-clustering
Importance of Feature Scaling
Feature scaling though standardization (or Z-score normalization) can be an important preprocessing step for many machine learning algorithms. Standardization involves rescaling the features such that they have the properties of a standard normal distribution with a mean of zero and a standard deviation of one.
While many algorithms (such as SVM, K-nearest neighbors, and logistic regression) require features to be normalized, intuitively we can think of Principle Component Analysis (PCA) as being a prime example of when normalization is important. In PCA we are interested in the components that maximize the variance. If one component (e.g. human height) varies less than another (e.g. weight) because of their respective scales (meters vs. kilos), PCA might determine that the direction of maximal variance more closely corresponds with the ‘weight’ axis, if those features are not scaled. As a change in height of one meter can be considered much more important than the change in weight of one kilogram, this is clearly incorrect.
To illustrate this, PCA is performed comparing the use of data with StandardScaler
applied, to unscaled data. The results are visualized and a clear difference noted. The 1st principal component in the unscaled set can be seen. It can be seen that feature #13 dominates the direction, being a whole two orders of magnitude above the other features. This is contrasted when observing the principal component for the scaled version of the data. In the scaled version, the orders of magnitude are roughly the same across all the features.
The dataset used is the Wine Dataset available at UCI. This dataset has continuous features that are heterogeneous in scale due to differing properties that they measure (i.e alcohol content, and malic acid).
The transformed data is then used to train a naive Bayes classifier, and a clear difference in prediction accuracies is observed wherein the dataset which is scaled before PCA vastly outperforms the unscaled version.
from:http://scikit-learn.org/stable/auto_examples/preprocessing/plot_scaling_importance.html
cluster KMeans need preprocessing scale????的更多相关文章
- 聚类--K均值算法:自主实现与sklearn.cluster.KMeans调用
1.用python实现K均值算法 import numpy as np x = np.random.randint(1,100,20)#产生的20个一到一百的随机整数 y = np.zeros(20) ...
- 第八次作业:聚类--K均值算法:自主实现与sklearn.cluster.KMeans调用
import numpy as np x = np.random.randint(1,100,[20,1]) y = np.zeros(20) k = 3 def initcenter(x,k): r ...
- 【原】KMeans与深度学习模型结合提高聚类效果
这几天在做用户画像,特征是用户的消费商品的消费金额,原始数据(部分)是这样的: id goods_name goods_amount 男士手袋 1882.0 淑女装 2491.0 女士手袋 345.0 ...
- 【原】KMeans与深度学习自编码AutoEncoder结合提高聚类效果
这几天在做用户画像,特征是用户的消费商品的消费金额,原始数据(部分)是这样的: id goods_name goods_amount 男士手袋 1882.0 淑女装 2491.0 女士手袋 345.0 ...
- RFM模型的变形LRFMC模型与K-means算法的有机结合
应用场景: 可以应用在不同行业的客户分类管理上,比如航空公司,传统的RFM模型不再适用,通过RFM模型的变形LRFMC模型实现客户价值分析:基于消费者数据的精细化营销 应用价值: LRFMC模型构建之 ...
- 吴裕雄 数据挖掘与分析案例实战(14)——Kmeans聚类分析
# 导入第三方包import pandas as pdimport numpy as np import matplotlib.pyplot as pltfrom sklearn.cluster im ...
- 131.005 Unsupervised Learning - Cluster | 非监督学习 - 聚类
@(131 - Machine Learning | 机器学习) 零. Goal How Unsupervised Learning fills in that model gap from the ...
- Kmeans应用
1.思路 应用Kmeans聚类时,需要首先确定k值,如果k是未知的,需要先确定簇的数量.其方法可以使用拐点法.轮廓系数法(k>=2).间隔统计量法.若k是已知的,可以直接调用sklearn子模块 ...
- Scikit-Learn模块学习笔记——数据预处理模块preprocessing
preprocessing 模块提供了数据预处理函数和预处理类,预处理类主要是为了方便添加到 pipeline 过程中. 数据标准化 标准化预处理函数: preprocessing.scale(X, ...
随机推荐
- 微软2016校园招聘在线笔试第二场 题目1 : Lucky Substrings
时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 A string s is LUCKY if and only if the number of different ch ...
- ansible的异步执行
ansible任务的异步执行 96 茶客furu声 关注 2016.07.12 01:40* 字数 458 阅读 1777评论 0喜欢 4 ansible方便在于能批量下发,并返回结果和呈现.简单.高 ...
- Android Studio导入eclipse工程(引用多个其它工程)
eclipse工程向android studio 迁移过程中需要到编译错误: eclipse工程的结构比较复杂,引用了其它的工程,在迁移的过程中遇到了错误. @ViewInject(R.id.edit ...
- lumen手记:自定义Validate表单验证
版权声明:本文为博主原创文章,未经博主允许不得转载. 今天开始跳lumen的表单验证Validate类的坑,确实好坑!!! 首先,lumen的表单验证返回是无状态的json格式api,这... 所有开 ...
- 阿里巴巴fastjson 包的使用解析json数据
Fastjson是一个Java语言编写的高性能功能完善的JSON库.由阿里巴巴公司团队开发的. 主要特性主要体现在以下几个方面: 1.高性能 fastjson采用独创的算法,将parse的速度提升到极 ...
- What I learned from competing against a ConvNet on ImageNet
http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/
- Django之restframework2视图三部曲
视图三部曲 下面我来来看restframework是如何将冗余的代码一步步的进行封装. 这里主要用到的是多继承 第一步mixin类编写视图 AuthorModelSerializer: class A ...
- 基于flask的web微信
web微信 1.扫码获取头像 当你打开web微信的时候,因为http是无状态的,web微信如何实时的获取用户的扫码动作? 那么这里用到的是长轮询的方式. from flask import Flask ...
- oracle 查询重复数据并且删除, 只保留一条数据重复数据
最近面试中都遇到了这样一个数据库题: 删除表中的重复数据,有且只保留一条重复数据. 思路: 1)这个题需要用到rowid,首先找到重复数据的rowid,并找出rowid最大或最小值,作为删除的条件: ...
- hadoop2.2.0安装需要注意的事情
今天在安装hadoop2.2.0时遇到若干问题,解决这些问题有些心得,记录下来以备不时之需. 问题1.master和slave之间不能相互ssh免密码登陆. 问题表象此处略过,直接说解决办法: 1.查 ...