Circle Through Three Points
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 3766   Accepted: 1570

Description

Your team is to write a program that, given the Cartesian coordinates of three points on a plane, will find the equation of the circle through them all. The three points will not be on a straight line.
The solution is to be printed as an equation of the form

	(x - h)^2 + (y - k)^2 = r^2				(1)

and an equation of the form

	x^2 + y^2 + cx + dy - e = 0				(2)

Input

Each line of input to your program will contain the x and y coordinates of three points, in the order Ax, Ay, Bx, By, Cx, Cy. These coordinates will be real numbers separated from each other by one or more spaces.

Output

Your program must print the required equations on two lines using the format given in the sample below. Your computed values for h, k, r, c, d, and e in Equations 1 and 2 above are to be printed with three digits after the decimal point. Plus and minus signs in the equations should be changed as needed to avoid multiple signs before a number. Plus, minus, and equal signs must be separated from the adjacent characters by a single space on each side. No other spaces are to appear in the equations. Print a single blank line after each equation pair.

Sample Input

7.0 -5.0 -1.0 1.0 0.0 -6.0
1.0 7.0 8.0 6.0 7.0 -2.0

Sample Output

(x - 3.000)^2 + (y + 2.000)^2 = 5.000^2
x^2 + y^2 - 6.000x + 4.000y - 12.000 = 0 (x - 3.921)^2 + (y - 2.447)^2 = 5.409^2
x^2 + y^2 - 7.842x - 4.895y - 7.895 = 0

Source

恶心的输出..看了discuss才知道0.000要原样输出。。

#include<stdio.h>
#include<iostream>
#include<string.h>
#include <stdlib.h>
#include<math.h>
#include<algorithm>
using namespace std;
const double pi = 3.141592653589793;
const double eps = 1e-;
struct Point
{
double x,y;
} p[];
double dis(Point a,Point b)
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
///外接圆圆心坐标
Point waixin(Point a,Point b,Point c)
{
Point p;
double a1 = b.x - a.x, b1 = b.y - a.y, c1 = (a1*a1 + b1*b1)/;
double a2 = c.x - a.x, b2 = c.y - a.y, c2 = (a2*a2 + b2*b2)/;
double d = a1*b2 - a2*b1;
p.x = a.x + (c1*b2 - c2*b1)/d, p.y=a.y + (a1*c2 -a2*c1)/d;
return p;
}
char check(double x)
{
if(x<-eps) return '+';
return '-';
}
char check2(double x)
{
if(x<-eps) return '-';
return '+';
}
int main()
{ while(scanf("%lf%lf%lf%lf%lf%lf",&p[].x,&p[].y,&p[].x,&p[].y,&p[].x,&p[].y)!=EOF)
{
double a = dis(p[],p[]);
double b = dis(p[],p[]);
double c = dis(p[],p[]);
double r = a*b*c/sqrt((a+b+c)*(-a+b+c)*(a-b+c)*(a+b-c));
Point center;
center = waixin(p[],p[],p[]);
if(fabs(center.x)<eps) printf("x^2 + ");
else printf("(x %c %.3lf)^2 + ",check(center.x),fabs(center.x));
if(fabs(center.y)<eps) printf("y^2");
else printf("(y %c %.3lf)^2",check(center.y),fabs(center.y));
printf(" = %.3lf^2\n",r); printf("x^2 + y^2");
double c1 = *center.x,d1=*center.y;
double r1 = center.x*center.x+center.y*center.y-r*r;
printf(" %c %.3lfx %c %.3lfy %c %.3lf = 0\n\n",check(c1),fabs(c1),check(d1),fabs(d1),check2(r1),fabs(r1));
}
return ;
}

poj 1329(已知三点求外接圆方程.)的更多相关文章

  1. poj 2242(已知三点求外接圆周长)

    The Circumference of the Circle Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8310   ...

  2. 2020牛客暑期多校训练营 第二场 B Boundary 计算几何 圆 已知三点求圆心

    LINK:Boundary 计算几何确实是弱项 因为好多东西都不太会求 没有到很精通的地步. 做法很多,先说官方题解 其实就是枚举一个点 P 然后可以发现 再枚举一个点 然后再判断有多少个点在圆上显然 ...

  3. 【NX二次开发】三点画圆,三角形外心,已知三点求圆心

    已知P1.P2.P3,求点O 算法:三点不在一条直线上时,通过连接任意两点,作中垂线.任意两条中垂线的交点是圆心.

  4. poj 2002(好题 链式hash+已知正方形两点求另外两点)

    Squares Time Limit: 3500MS   Memory Limit: 65536K Total Submissions: 18493   Accepted: 7124 Descript ...

  5. Luogu-P1027 Car的旅行路线 已知三点确定矩形 + 最短路

    传送门:https://www.luogu.org/problemnew/show/P1027 题意: 图中有n个城市,每个城市有4个机场在矩形的四个顶点上.一个城市间的机场可以通过高铁通达,不同城市 ...

  6. [YY]已知逆序列求原序列(二分,树状数组)

    在看组合数学,看到逆序列这个概念.于是YY了一道题:已知逆序列,求出原序列. 例子: 元素个数 n = 8 逆序列 a={5,3,4,0,2,1,1,0} 则有原序列 p={4,8,6,2,5,1,3 ...

  7. 已知段地址,求CPU寻址范围

    已知段地址为0001H,仅通过变化偏移地址寻址,则CPU的寻址范围是? 物理地址 = 段地址×16 + 偏移地址 所以物理地址的范围是[16×1H+0H, 16×1H+FFFFH] 也就是[10H×1 ...

  8. poj 1329 Circle Through Three Points(求圆心+输出)

    题目链接:http://poj.org/problem?id=1329 输出很蛋疼,要考虑系数为0,输出也不同 #include<cstdio> #include<cstring&g ...

  9. POJ 2208 已知边四面体六个长度,计算体积

    Pyramids Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 2718   Accepted: 886   Special ...

随机推荐

  1. 2 semantic ui 框架的应用

    为什么使用css框架 1.使用基础样式 :  ui segment 分段:内容片段 <link rel="stylesheet" href="css/semanti ...

  2. P2440 木材加工(二分答案)

    P2440 木材加工 要保护环境 题目描述 题目描述: 木材厂有一些原木,现在想把这些木头切割成一些长度相同的小段木头(木头有可能有 剩余),需要得到的小段的数目是给定的.当然,我们希望得到的小段木头 ...

  3. ListView getChildCount 以及getChildAt 坑 误区指南

    今天调试的时候,才知道. 原来listview 的 getChildCount 取得是当前可先的list item 的个数,而不是整个listview 的count. 整个listview 的数量应该 ...

  4. Android Studio自定义模板代码

    http://blog.csdn.net/h183288132/article/details/51916399 生成模板看上面这个博客就可以了,不再重复制造轮子. 不过需要补充的是: 还应该有下面的 ...

  5. linux udp c/s

    一.UDP C/S编程的步骤如下图所示 二.与TCP C/S通信的区别在于:服务端没有设置监听和等待连接的过程.客户端没有连接服务端的过程.基于UDP的通信时不可靠地,面向无连接的,发送的数据无法确切 ...

  6. APP遇到大量的真实手机号刷注册用户该如何应对?

    欢迎访问网易云社区,了解更多网易技术产品运营经验. 在说如何应对之前,先给各位梳理移动端APP可能遇到哪些作弊风险.1. 渠道商刷量,伪造大量的下载量和装机量,但没有新用户注册:2. 对于电商.P2P ...

  7. 《Cracking the Coding Interview》——第8章:面向对象设计——题目7

    2014-04-23 23:38 题目:你要如何设计一个聊天服务器,有什么技术难点? 解法:这是基于工作经验的面试题吗?否则,一个new grad碰上这种题目能打点草稿也就算不错了. 代码: // 8 ...

  8. Pascal小游戏 井字棋

    一个很经典的井字棋游戏 Pascal源码Chaobs奉上 注意:1.有的FP版本不支持汉语,将会出现乱码.2.别想赢电脑了,平手不错了. 井字过三关: program TicTacToe; uses ...

  9. hnust 神奇的序列

    问题 E: 神奇的序列 时间限制: 1 Sec  内存限制: 128 MB提交: 635  解决: 84[提交][状态][讨论版] 题目描述        Aurora在南宁发现了一个神奇的序列,即对 ...

  10. 选择MariaDB的压缩数据引擎TokuDB

    业务运用场景 数据基本不用update, 不频繁的范围查询 数据存储量较大(为以后准备) 选择占用磁盘较小的db 业务对数据库插入操作频繁,为避免影响其它业务,需要将直播业务的DB 独立出来,选择另外 ...