果然如Miracle学长所说。。。调了一天。。。qwq。。还是过不了线下的Hack

upd after 40min:刚刚过了


就是多了一个判无解的操作。。。

当系数都为0,且常数项不为0时,即为无解。

当找到自由元时,不能跳过这一行。。。否则会被Hack,见洛谷讨论

#include<cstdio>
#include<iostream>
#include<cmath>
#define R register int
using namespace std;
const double eps=1E-;
inline int g() {
R ret=,fix=; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-:fix;
do ret=ret*+(ch^); while(isdigit(ch=getchar())); return ret*fix;
}
long double a[][];
int n,m,k;
inline bool ck0(double x) {return x<eps&&x>-eps;}
inline void Gauss() {
for(R i=,pos=;i<=n&&pos<=n;++i) { R p;
for(p=pos;p<=n&&ck0(a[p][i]);++p) ;
if(p==n+) continue;
if(pos!=p) for(R j=;j<=n+;++j) swap(a[pos][j],a[p][j]);
for(R j=pos+;j<=n;++j) if(!ck0(a[j][i])){
register long double t=a[j][i]/a[pos][i];
for(R k=;k<=n+;++k) a[j][k]-=a[pos][k]*t;
} ++pos;
} register bool flg1=false,flg2=false;
for(R i=;i<=n;++i) { R j=;
while(ck0(a[i][j])&&j<=n+) ++j;
if(j==n+) flg1=true;
if(j>n+) flg2=true;
} if(flg1) {putchar('-'),putchar(''); return ;}
if(flg2) {putchar(''); return ;}
for(R i=n;i>=;--i) {
for(R j=n;j>=i+;--j) a[i][n+]-=a[i][j]*a[j][n+];
a[i][n+]/=a[i][i];
} for(R i=;i<=n;++i) if(ck0(a[i][n+])) printf("x%d=0\n",i); else printf("x%d=%.2Lf\n",i,a[i][n+]);
}
signed main() {
n=g(); for(R i=;i<=n;++i) for(R j=;j<=n+;++j) a[i][j]=g(); Gauss(); //while(1);
}

2019.05.13

Luogu P2455 [SDOI2006]线性方程组 真•高斯消元板子的更多相关文章

  1. Luogu2455 [SDOI2006]线性方程组 (高斯消元)

    模板特殊情况没exit(0) $\longrightarrow$60 了一下午 //#include <iostream> #include <cstdio> #include ...

  2. luogu P2962 [USACO09NOV]灯Lights 高斯消元

    目录 题目链接 题解 题目链接 luogu P2962 [USACO09NOV]灯Lights 题解 可以折半搜索 map合并 复杂度 2^(n / 2)*logn 高斯消元后得到每个点的翻转状态 爆 ...

  3. 【Luogu】P3317重建(高斯消元+矩阵树定理)

    题目链接 因为这个专门跑去学了矩阵树定理和高斯消元qwq 不过不是很懂.所以这里只放题解 玫葵之蝶的题解 某未知dalao的矩阵树定理 代码 #include<cstdio> #inclu ...

  4. 【luogu P2455 [SDOI2006]线性方程组】 题解

    题目链接:https://www.luogu.org/problemnew/show/P2455 无解:最后一列对应元素不为0,前面全是0. 无穷解:一行全是0. 嗯...在消元过程中不要直接拿矩阵元 ...

  5. luogu 3389 【模板】高斯消元

    大概就是对每一行先找到最大的减小误差,然后代入消元 #include<iostream> #include<cstdio> #include<cstring> #i ...

  6. P2455 [SDOI2006]线性方程组

    P2455 [SDOI2006]线性方程组 真\(\cdot\)高斯消元模板题 由于各种hack数据被造出来~码量突增~,其实也就多了二三十行 将每行系数消到最多有一个非0数 特殊情况: 在过程同时 ...

  7. hdu 3359 Kind of a Blur (高斯消元 浮点型)

    题目链接 题意: H * W (W,H <= 10) 的矩阵A的某个元素A[i][j],从它出发到其他点的曼哈顿距离小于等于D的所有值的和S[i][j]除上可达点的数目,构成了矩阵B.给定矩阵B ...

  8. UVALive - 3490 Generator (AC自动机+高斯消元dp)

    初始有一个空串s,从前n个大写字母中不断随机取出一个字母添加到s的结尾,出现模式串t时停止,求停止时s的长度期望. 这道题解法不唯一,比较无脑的方法是对模式串t建一个单串AC自动机,设u为自动机上的一 ...

  9. [bzoj3601] 一个人的数论 [莫比乌斯反演+高斯消元]

    题面 传送门 思路 这题妙啊 先把式子摆出来 $f_n(d)=\sum_{i=1}^n[gcd(i,n)==1]i^d$ 这个$gcd$看着碍眼,我们把它反演掉 $f_n(d)=\sum_{i=1}^ ...

随机推荐

  1. 欧拉函数(汇总&例题)

    定义 欧拉函数 $\varphi(n)$表示小于等于$n$的正整数中与$n$互质的数的数目. 性质 1.积性函数(证明). 2.$\varphi(1)=1$(显然) 3.对于质数$n$,$\varph ...

  2. 洛谷P2895 [USACO08FEB]流星雨Meteor Shower

    题目描述 Bessie hears that an extraordinary meteor shower is coming; reports say that these meteors will ...

  3. 关于VGG网络的介绍

    本博客参考作者链接:https://zhuanlan.zhihu.com/p/41423739 前言: VGG是Oxford的Visual Geometry Group的组提出的(大家应该能看出VGG ...

  4. C#程序运行计时

    var stp = new System.Diagnostics.Stopwatch(); stp.Start();//计时启动 ..........程序代码........... stp.Stop( ...

  5. pycharm安装 package报错:module 'pip' has no attribute 'main'

    转自: <pycharm安装 package报错:module 'pip' has no attribute 'main'> https://www.cnblogs.com/Fordest ...

  6. altium designer 中的top/bottom solder和top/bottom paste mask

    转载请注明出处:http://blog.csdn.net/qq_26093511/article/details/51751936 1.top solder为助焊层,说白一点就是说,有这个层的地方就没 ...

  7. [jQuery] 按回车键实现登录

    Jquery按回车键提交实现登录的方式分为两种: 1.按钮提交 2.表单提交 1.按钮提交 $("#LoginIn").off('click').on('click', funct ...

  8. qtp重定义数组大小

    a dim arr1() ) a  dim arr() ReDim arr(a) arr arr ) arr For each i in arr     print arr(i) Next

  9. WPF dataGrid下的ComboBox的绑定

    WPF dataGrid下的ComboBox的绑定 Wpf中dataGrid中的某列是comboBox解决这个问题费了不少时间,不废话了直接上代码 xaml 代码 <DataGridTempla ...

  10. Android M AudioPolicy 分析

    1.AudioPolicyService基础 AudioPolicy在Android系统中主要负责Audio"策略"相关的问题.它和AudioFlinger一起组成了Android ...