G - Football

Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u

Submit Status

Description

Consider a single-elimination football tournament involving 2n teams, denoted 1, 2, …, 2n. In each round of the tournament, all teams still in the tournament are placed in a list in order of increasing index. Then, the first team in the list plays the second team, the third team plays the fourth team, etc. The winners of these matches advance to the next round, and the losers are eliminated. After n rounds, only one team remains undefeated; this team is declared the winner.

Given a matrix P = [pij] such that pij is the probability that team i will beat team j in a match determine which team is most likely to win the tournament.

Input

The input test file will contain multiple test cases. Each test case will begin with a single line containing n (1 ≤ n ≤ 7). The next 2n lines each contain 2nvalues; here, the jth value on the ith line represents pij. The matrix P will satisfy the constraints that pij = 1.0 − pji for all i ≠ j, and pii = 0.0 for all i. The end-of-file is denoted by a single line containing the number −1. Note that each of the matrix entries in this problem is given as a floating-point value. To avoid precision problems, make sure that you use either the double data type instead of float.

Output

The output file should contain a single line for each test case indicating the number of the team most likely to win. To prevent floating-point precision issues, it is guaranteed that the difference in win probability for the top two teams will be at least 0.01.

Sample Input

2
0.0 0.1 0.2 0.3
0.9 0.0 0.4 0.5
0.8 0.6 0.0 0.6
0.7 0.5 0.4 0.0
-1

Sample Output

2

Hint

In the test case above, teams 1 and 2 and teams 3 and 4 play against each other in the first round; the winners of each match then play to determine the winner of the tournament. The probability that team 2 wins the tournament in this case is:

P(2 wins)  P(2 beats 1)P(3 beats 4)P(2 beats 3) + P(2 beats 1)P(4 beats 3)P(2 beats 4)
p21p34p23 + p21p43p24
= 0.9 · 0.6 · 0.4 + 0.9 · 0.4 · 0.5 = 0.396.

The next most likely team to win is team 3, with a 0.372 probability of winning the tournament.

题目:有2^n个队,相邻的两两打淘汰赛,,求最后哪个队夺冠的概率最大。
题解:dp[i][j]表示第i轮的时候,第j去支队伍赢的概率。那么dp[i][j]的前提就是i-1轮的时候,
   j是赢的,而且第i轮赢了对方接下来就是找到第i轮的时候,他的可能队手

   通过二进制可以发现规律,所有高位是一样的,第i位刚好相反,

   所以用位运算可以巧妙解决,见代码

   dp[i][j]=sigma(dp[i-1][j]*dp[i-1][k]*p[j][k])

   每经过一轮会淘汰掉一半的人,所以可以右移一位,即除以二求概率。

   具体的解释请看代码注释。O(∩_∩)O

#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int maxn=;
double dp[][maxn];
double p[][];
int main()
{
int n,ans;
while(scanf("%d",&n)&&n!=-)
{
memset(dp,,sizeof(dp));
int x=<<n; //左移 2^n支队伍
for(int i=; i<x; i++)
for(int j=; j<x; j++)
scanf("%lf",&p[i][j]);
for(int j=; j<x; j++)//初始化
dp[][j]=;
for(int i=; i<=n; i++)//n次比赛
for(int j=; j<x; j++)//注意这里跑的核心是j 这个代码相对于j来说的
for(int k=; k<x; k++) // 复杂度最高7*2^14=114672 不会超时
//当然这里是可以优化的 这么写代码更短
if((j>>(i-)^)==(k>>(i-)))//右移 多加括号 代表每次淘汰一半人
//这个if的意思是奇数只和上一个数比而偶数只和下一个数比
//异或一可以让奇数减一 偶数加一
dp[i][j]+=dp[i-][j]*dp[i-][k]*p[j][k];//注意k在前i-1轮也得赢
//别忘了加号 是把概率加起来
double ans=-;
int ansj=;
/*for(int j=0;j<(1<<n);j++)
cout<<dp[n][j]<<endl;*/ //输出各队胜率
for(int j=; j<x; j++) //选择胜率最高的那个队伍
if(dp[n][j]>ans)
{
ans=dp[n][j];
ansj=j+;
}
printf("%d\n",ansj);
} return ;
}

附上kuangbin的代码,都是一个思路。传送门

poj 3071 Football (概率DP水题)的更多相关文章

  1. POJ 3071 Football(概率DP)

    题目链接 不1Y都对不住看过那么多年的球.dp[i][j]表示i队进入第j轮的概率,此题用0-1<<n表示非常方便. #include <cstdio> #include &l ...

  2. Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题

    除非特别忙,我接下来会尽可能翻译我做的每道CF题的题面! Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题 题面 胡小兔和司公子都认为对方是垃圾. 为了决出谁才是垃 ...

  3. 13年山东省赛 The number of steps(概率dp水题)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud The number of steps Time Limit: 1 Sec  Me ...

  4. hdu4405Aeroplane chess 概率dp水题

    //从0到n有n+1个格子 //对于格子i,掷一次骰子的数为x.那么能够从位置i到位置i+x //格子之间有连线,假设格子a和b有连线,那么从a到b不用掷骰子 //求从0到n的骰子掷的次数的期望 // ...

  5. ACM :漫漫上学路 -DP -水题

    CSU 1772 漫漫上学路 Time Limit: 1000MS   Memory Limit: 131072KB   64bit IO Format: %lld & %llu Submit ...

  6. [poj2247] Humble Numbers (DP水题)

    DP 水题 Description A number whose only prime factors are 2,3,5 or 7 is called a humble number. The se ...

  7. poj 3080 Blue Jeans(水题 暴搜)

    题目:http://poj.org/problem?id=3080 水题,暴搜 #include <iostream> #include<cstdio> #include< ...

  8. poj 3071 Football(概率dp)

    id=3071">http://poj.org/problem? id=3071 大致题意:有2^n个足球队分成n组打比赛.给出一个矩阵a[][],a[i][j]表示i队赢得j队的概率 ...

  9. POJ 3071 Football (概率DP)

    概率dp的典型题.用dp[j][i]表示第j个队第i场赢的概率.那么这场要赢就必须前一场赢了而且这一场战胜了可能的对手.这些都好想,关键是怎么找出当前要算的队伍的所有可能的竞争对手?这个用异或来算,从 ...

随机推荐

  1. C# 禁止在textBox输入框输入非法字符

    首先添加下面代码 //禁止在textBox输入框输入非法字符 private void keypressed(Object o, KeyPressEventArgs e) { if (e.KeyCha ...

  2. python基础之继承实现原理、子类调用父类的方法、封装

    继承实现原理 python中的类可以同时继承多个父类,继承的顺序有两种:深度优先和广度优先. 一般来讲,经典类在多继承的情况下会按照深度优先的方式查找,新式类会按照广度优先的方式查找 示例解析: 没有 ...

  3. Spark&Hive结合起来

    1.spark与Hive结合起来 前提:当你spark的版本是1.6.1的时候,你的Hive版本要1.2.1,用别的版本会有问题 我们在做的时候,Hive的版本很简单,我们只需要解压缩,告诉他Hive ...

  4. 12,DBUtils - Python数据库连接池

    创建数据库连接池: import time import pymysql import threading from DBUtils.PooledDB import PooledDB, SharedD ...

  5. 15.2,redis发布订阅

    发布publish 订阅subscribe Redis 通过 PUBLISH . SUBSCRIBE 等命令实现了订阅与发布模式. 举例1: qq群的公告,单个发布者,多个收听者 发布/订阅 实验 发 ...

  6. Android 导出traces.txt 遇到的坑

    我一直以为traces.txt 导出需要root .因为每当我 cd data ll 然后就会告诉我 Permission denied 后来我问同事,怎么导出traces.txt 文件.同事说很简单 ...

  7. git命令行操作详解

    目录 1.常用操作 1.1 新建代码库 1.2 配置 1.3 remote管理 1.4 添加和撤销操作 1.5 代码提交 1.6 分支操作 1.7 查看信息 1.8 pull操作 1.9 push操作 ...

  8. 《Cracking the Coding Interview》——第13章:C和C++——题目4

    2014-04-25 19:50 题目:深拷贝和浅拷贝有什么区别?如何应用? 解法:深拷贝传值,浅拷贝传引用.java里对此做了限制,而C++里面用起来更自由.大结构不宜传值,因为拷贝过程效率低. 代 ...

  9. USACO Section1.3 Mixing Milk 解题报告

    milk解题报告 —— icedream61 博客园(转载请注明出处)----------------------------------------------------------------- ...

  10. 在iis上部署asp.net mvc2.0

    mvc2.0是vs2010自带的,在开发环境下可以直接部署在iis中.在生产环境下,如果不能找到正确的mvc2.0版本,可以直接把开发环境下的System.Web.Mvc.dll拷贝过去使用. 1,  ...