poj 3071 Football (概率DP水题)
Description
Consider a single-elimination football tournament involving 2n teams, denoted 1, 2, …, 2n. In each round of the tournament, all teams still in the tournament are placed in a list in order of increasing index. Then, the first team in the list plays the second team, the third team plays the fourth team, etc. The winners of these matches advance to the next round, and the losers are eliminated. After n rounds, only one team remains undefeated; this team is declared the winner.
Given a matrix P = [pij] such that pij is the probability that team i will beat team j in a match determine which team is most likely to win the tournament.
Input
The input test file will contain multiple test cases. Each test case will begin with a single line containing n (1 ≤ n ≤ 7). The next 2n lines each contain 2nvalues; here, the jth value on the ith line represents pij. The matrix P will satisfy the constraints that pij = 1.0 − pji for all i ≠ j, and pii = 0.0 for all i. The end-of-file is denoted by a single line containing the number −1. Note that each of the matrix entries in this problem is given as a floating-point value. To avoid precision problems, make sure that you use either the double
data type instead of float
.
Output
The output file should contain a single line for each test case indicating the number of the team most likely to win. To prevent floating-point precision issues, it is guaranteed that the difference in win probability for the top two teams will be at least 0.01.
Sample Input
2
0.0 0.1 0.2 0.3
0.9 0.0 0.4 0.5
0.8 0.6 0.0 0.6
0.7 0.5 0.4 0.0
-1
Sample Output
2
Hint
In the test case above, teams 1 and 2 and teams 3 and 4 play against each other in the first round; the winners of each match then play to determine the winner of the tournament. The probability that team 2 wins the tournament in this case is:
P(2 wins) | = P(2 beats 1)P(3 beats 4)P(2 beats 3) + P(2 beats 1)P(4 beats 3)P(2 beats 4) = p21p34p23 + p21p43p24 = 0.9 · 0.6 · 0.4 + 0.9 · 0.4 · 0.5 = 0.396. |
The next most likely team to win is team 3, with a 0.372 probability of winning the tournament.
通过二进制可以发现规律,所有高位是一样的,第i位刚好相反,
所以用位运算可以巧妙解决,见代码
dp[i][j]=sigma(dp[i-1][j]*dp[i-1][k]*p[j][k])
每经过一轮会淘汰掉一半的人,所以可以右移一位,即除以二求概率。
具体的解释请看代码注释。O(∩_∩)O
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int maxn=;
double dp[][maxn];
double p[][];
int main()
{
int n,ans;
while(scanf("%d",&n)&&n!=-)
{
memset(dp,,sizeof(dp));
int x=<<n; //左移 2^n支队伍
for(int i=; i<x; i++)
for(int j=; j<x; j++)
scanf("%lf",&p[i][j]);
for(int j=; j<x; j++)//初始化
dp[][j]=;
for(int i=; i<=n; i++)//n次比赛
for(int j=; j<x; j++)//注意这里跑的核心是j 这个代码相对于j来说的
for(int k=; k<x; k++) // 复杂度最高7*2^14=114672 不会超时
//当然这里是可以优化的 这么写代码更短
if((j>>(i-)^)==(k>>(i-)))//右移 多加括号 代表每次淘汰一半人
//这个if的意思是奇数只和上一个数比而偶数只和下一个数比
//异或一可以让奇数减一 偶数加一
dp[i][j]+=dp[i-][j]*dp[i-][k]*p[j][k];//注意k在前i-1轮也得赢
//别忘了加号 是把概率加起来
double ans=-;
int ansj=;
/*for(int j=0;j<(1<<n);j++)
cout<<dp[n][j]<<endl;*/ //输出各队胜率
for(int j=; j<x; j++) //选择胜率最高的那个队伍
if(dp[n][j]>ans)
{
ans=dp[n][j];
ansj=j+;
}
printf("%d\n",ansj);
} return ;
}
附上kuangbin的代码,都是一个思路。传送门。
poj 3071 Football (概率DP水题)的更多相关文章
- POJ 3071 Football(概率DP)
题目链接 不1Y都对不住看过那么多年的球.dp[i][j]表示i队进入第j轮的概率,此题用0-1<<n表示非常方便. #include <cstdio> #include &l ...
- Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题
除非特别忙,我接下来会尽可能翻译我做的每道CF题的题面! Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题 题面 胡小兔和司公子都认为对方是垃圾. 为了决出谁才是垃 ...
- 13年山东省赛 The number of steps(概率dp水题)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud The number of steps Time Limit: 1 Sec Me ...
- hdu4405Aeroplane chess 概率dp水题
//从0到n有n+1个格子 //对于格子i,掷一次骰子的数为x.那么能够从位置i到位置i+x //格子之间有连线,假设格子a和b有连线,那么从a到b不用掷骰子 //求从0到n的骰子掷的次数的期望 // ...
- ACM :漫漫上学路 -DP -水题
CSU 1772 漫漫上学路 Time Limit: 1000MS Memory Limit: 131072KB 64bit IO Format: %lld & %llu Submit ...
- [poj2247] Humble Numbers (DP水题)
DP 水题 Description A number whose only prime factors are 2,3,5 or 7 is called a humble number. The se ...
- poj 3080 Blue Jeans(水题 暴搜)
题目:http://poj.org/problem?id=3080 水题,暴搜 #include <iostream> #include<cstdio> #include< ...
- poj 3071 Football(概率dp)
id=3071">http://poj.org/problem? id=3071 大致题意:有2^n个足球队分成n组打比赛.给出一个矩阵a[][],a[i][j]表示i队赢得j队的概率 ...
- POJ 3071 Football (概率DP)
概率dp的典型题.用dp[j][i]表示第j个队第i场赢的概率.那么这场要赢就必须前一场赢了而且这一场战胜了可能的对手.这些都好想,关键是怎么找出当前要算的队伍的所有可能的竞争对手?这个用异或来算,从 ...
随机推荐
- 简单的for循环实现九九乘法表
PHP for 循环 语法 for (init counter; test counter; increment counter) { code to be executed; } 参数: init ...
- 【js】【读书笔记】廖雪峰的js教程读书笔记
最近在看廖雪峰的js教程,重温了下js基础,记下一些笔记,好记性不如烂笔头嘛 编写代码尽量使用严格模式 use strict JavaScript引擎是一个事件驱动的执行引擎,代码总是以单线程执行 执 ...
- perl实现监控linux
1.使用root用户telnet进入linux系统 2.修改DNS以下两种方法 A.通过setup命令配置dns B.通过在/etc目录下创建resolv.conf文件 3.查看DNS是否配置成功 [ ...
- pocscan扫描框架的搭建
0x00 无意中看到了一篇文章 讲pocscan的搭建..就比较心动 决定自己也搭建一个这样的扫描平台 0x01 安装docker 用的是ubuntu yklin 16.04 x64的系统 在更新源之 ...
- Spring---资源访问工具类
JDK所提供的访问资源的类并不能很好的满足各种底层资源的访问需求,因此,Spring设计了一个Resource接口,它为应用提供了更强大的访问底层资源的能力 主要方法 boolean exists() ...
- [记读书笔]python3.5实现socket通讯(UDP)
UDP连接: 无连接,从一个端向另一端发送独立的数据分组 使用UDP连接的客户-服务器程序: UDPServer.py import socket serverPort = 50009 serverS ...
- 1082: [SCOI2005]栅栏
链接 思路 二分+搜索+剪枝. 首先二分一个答案,表示最多可以切出x块.(一个结论:切出的一定是从较小的前x块.如果一个木材可以满足很多个需要的木材,那么切出最小的,就意味着以后再选时的机会更多.) ...
- NetCore log4net 集成以及配置日志信息不重复显示或者记录
NetCore log4net 集成,这是一个很常见而且网上大批大批的博文了,我写这个博文主要是为了记录我在使用过程中的一点小收获,以前在使用的过程中一直没有注意但是其实网上说的不清不楚的问题. 官方 ...
- 一个简单的同步集群的shell脚本
编写一个xsync文件 然后放在/usr/local/bin 目录下面 xsync文件如下: #!/bin/bash #1 获取输入参数个数,如果没有参数,直接退出 pcount=$# if((pco ...
- Java基本数据类型总结二
Java 基本数据类型总结二 变量就是申请内存来存储值.也就是说,当创建变量的时候,需要在内存中申请空间. 内存管理系统根据变量的类型为变量分配存储空间,分配的空间只能用来储存该类型数据. 因此,通过 ...