制造业物料清单BOM、智能文档阅读、科学文献影响因子、"Celebrated Italian mathematician ZepartzatT Gozinto" 与 高津托图
意大利数学家Z.高津托
意大利伟大数学家Sire Zepartzatt Gozinto的生卒年代是一个谜[1],但是他发明的 “高筋图” 在 制造资源管理、物料清单(BOM)管理、智能阅读、科学文献影响因子计算 等方面具有重要应用。
高津托图
下图是一个制造业物料需求高津托图,节点FP1、FP2分别表示最终产品的需求量,边上的数值表示组装部件所需要的上游零部件的数量,物料清单(BOM)系统需要知道所有零部件的总需求。图中:
Primary Demand(主需求) -- 市场对零部件的需求数量
Secondary Demand(次需求) -- 因产品组装产生的对零部件的需求
Total Demand(总需求)-- 以上两个需求之和
Product No. (产品(拓扑次序)编号)-- 根据组装约束对零部件产品进行拓扑排序的次序数

数学模型
设图中的零部件类型数为n,装配关系(边)数为m
设pd[i]为节点i的主需求(常量)
sd[i]为节点i的次需求(决策变量)
td[i]为节点i的总需求(被动变量)
pd[i]为节点i的产品拓扑次序编号(决策变量)
根据装配逻辑,对任何边k,如果边k的起始节点为a[k],终止节点为b[k],权值为c[k],则:
sd[i]=sum{k=1,...,m;a[k]==i}(c[k]td[b[k]]) | i=1,...,n
td[i]=sd[i]+pd[i]|i=1,...,n
把零部件从装配上游到下游排序:
pn[b[k]] >= pn[a[k]] + 1 | k=1,...,m
pn[i]>=1|i=1,...,n
pn[i]<=n|i=1,...,n
+Leapms模型:
min sum{i=1,...,n}pn[i]
subject to
sd[i]=sum{k=1,...,m;a[k]==i}(c[k]td[b[k]]) | i=1,...,n
td[i]=sd[i]+pd[i]|i=1,...,n
pn[b[k]] >= pn[a[k]] + 1 | k=1,...,m
pn[i]>=1|i=1,...,n
pn[i]<=n|i=1,...,n
where
m,n are numbers
e,pd are sets
a[k],b[k],c[k] are numbers | k=1,...,m
sd[i],td[i] are variables of nonnegative numbers|i=1,...,n
pn[i] is a variable of nonnegative number|i=1,...,n
data_relation
m=_$(e)/3
n=_$(pd)
a[k]=e[3k-2]|k=1,...,m
b[k]=e[3k-1]|k=1,...,m
c[k]=e[3k] |k=1,...,m
data
pd={150 50 20 230 0 0 0 0}
e={
3 1 1
4 1 2
4 2 3
4 3 3
4 5 2
5 2 4
6 3 4
6 4 5
7 4 3
7 5 1
8 5 2
}
求解:
+Leapms>load
Current directory is "ROOT".
.........
gozinto.leap
.........
please input the filename:gozinto
================================================================
1: min sum{i=1,...,n}pn[i]
2: subject to
3:
4: sd[i]=sum{k=1,...,m;a[k]==i}(c[k]td[b[k]]) | i=1,...,n
5: td[i]=sd[i]+pd[i]|i=1,...,n
6:
7: pn[b[k]] >= pn[a[k]] + 1 | k=1,...,m
8: pn[i]>=1|i=1,...,n
9: pn[i]<=n|i=1,...,n
10:
11: where
12: m,n are numbers
13: e,pd are sets
14: a[k],b[k],c[k] are numbers | k=1,...,m
15: sd[i],td[i] are variables of nonnegative numbers|i=1,...,n
16: pn[i] is a variable of nonnegative number|i=1,...,n
17:
18: data_relation
19: m=_$(e)/3
20: n=_$(pd)
21: a[k]=e[3k-2]|k=1,...,m
22: b[k]=e[3k-1]|k=1,...,m
23: c[k]=e[3k] |k=1,...,m
24: data
25: pd={150 50 20 230 0 0 0 0}
26: e={
27: 3 1 1
28: 4 1 2
29: 4 2 3
30: 4 3 3
31: 4 5 2
32: 5 2 4
33: 6 3 4
34: 6 4 5
35: 7 4 3
36: 7 5 1
37: 8 5 2
38: }
================================================================
>>end of the file.
Parsing model:
1D
2R
3V
4O
5C
6S
7End.
..................................
number of variables=24
number of constraints=43
..................................
+Leapms>solve
The LP is solved to optimal.
找到线性规划最优解.非零变量值和最优目标值如下:
.........
pn1*=4
pn2*=4
pn3*=3
pn4*=2
pn5*=3
pn6*=1
pn7*=1
pn8*=1
sd3*=150
sd4*=1360
sd5*=200
sd6*=8630
sd7*=4970
sd8*=400
td1*=150
td2*=50
td3*=170
td4*=1590
td5*=200
td6*=8630
td7*=4970
td8*=400
.........
Objective*=19
.........
+Leapms>
结果

参考文献
[1] Rousseau, R. . (1987). The gozinto theorem: using citations to determine influences on a scientific publication. Scientometrics, 11(3-4), 217-229.
制造业物料清单BOM、智能文档阅读、科学文献影响因子、"Celebrated Italian mathematician ZepartzatT Gozinto" 与 高津托图的更多相关文章
- Node.js的下载、安装、配置、Hello World、文档阅读
Node.js的下载.安装.配置.Hello World.文档阅读
- 我的Cocos Creator成长之路1环境搭建以及基本的文档阅读
本人原来一直是做cocos-js和cocos-lua的,应公司发展需要,现转型为creator.会在自己的博客上记录自己的成长之路. 1.文档阅读:(cocos的官方文档) http://docs.c ...
- 转:苹果Xcode帮助文档阅读指南
一直想写这么一个东西,长期以来我发现很多初学者的问题在于不掌握学习的方法,所以,Xcode那么好的SDK文档摆在那里,对他们也起不到什么太大的作用.从论坛.微博等等地方看到的初学者提出的问题,也暴露出 ...
- Keras 文档阅读笔记(不定期更新)
目录 Keras 文档阅读笔记(不定期更新) 模型 Sequential 模型方法 Model 类(函数式 API) 方法 层 关于 Keras 网络层 核心层 卷积层 池化层 循环层 融合层 高级激 ...
- Django文档阅读-Day1
Django文档阅读-Day1 Django at a glance Design your model from djano.db import models #数据库操作API位置 class R ...
- Django文档阅读-Day2
Django文档阅读 - Day2 Writing your first Django app, part 1 You can tell Django is installed and which v ...
- Django文档阅读-Day3
Django文档阅读-Day3 Writing your first Django app, part 3 Overview A view is a "type" of Web p ...
- BOM,文档宽高及窗口事件小析
(一)BOM:Browser Object Model(浏览器对象模型)页面上所有的变量都是window的属性 一.方法:1. open(,)打开一个新窗口(页面)一参为页面地址url,二参为打开方式 ...
- Silverlight类百度文库在线文档阅读器
百度文库阅读器是基于Flash的,用Silverlight其实也可以做. 我实现的在线阅读器可以应用于内网文档发布,在线阅览审批等.没有过多的堆积功能,专注于核心功能.主要有以下特性: 1. 基于XP ...
随机推荐
- session.go
package { so.ttl = ttl } } } // WithContext assigns a context to the session ...
- JUnit 异常处理
java.lang.Exception: No tests found matching [{ExactMatcher:fDisplayName=testfindAll], {ExactMatcher ...
- OpenGL执行渲染图片的主要操作步骤
一个用来执行图形渲染的OpenGL程序的主要步骤包括: 1.从OpenGL的几何图元中设置数据,用于构建形状: 2.使用不用的着色器(shader)对输入的图元数据进行进行计算,判断它们的位置.颜色以 ...
- Python笔记 in 机器学习
Python3的函数实在太多了,在机器学习的过程中,总会一不留神就学到一个python的高效率用法,怕自己会忘记,所以更新在这篇随笔中. 更新至:2018.5.23 字符串str的前缀或者后缀识别 s ...
- myeclipse maven tomcat插件 创建web工程
自从有了云笔记,很久不写博客了.今天写了使用Freemarker静态化JSP页面,索性就发出来.初学,勿喷. 这篇文字以前放在云笔记里,当然里面有很多借鉴网络上的东西,而自己也使用Maven很久了,索 ...
- java 日期类 小结
import java.text.*; import java.util.*; class Test2 { public static void main(String[] args) { Syste ...
- Charles 如何破解与连接手机进行抓包
破解charles: 由于本人工作原因,现使用的为mac笔记本,但是基本的使用原理都是一样的,以下为如何破解charles与连接手机进行抓包详解.工具如有需要着请留言. 当前下载使用的版本为:char ...
- 让你分分钟理解 JavaScript 闭包
闭包,是 Javascript 比较重要的一个概念,对于初学者来讲,闭包是一个特别抽象的概念,特别是 ECMAScript 规范给的定义,如果没有实战经验,很难从定义去理解它.因此,本文不会对闭包的概 ...
- 微服务架构 - 巧妙获取被墙的Docker镜像
在国内由于种种原因,有些Docker镜像直接是获取不到的,特别是k8s中的一些镜像.本人在部署k8s中的helm组件时需要获取tiller镜像,如果直接用如下命令: docker pull gcr.i ...
- 【JVM虚拟机】(8)--深入理解Class中--方法、属性表集合
#[JVM虚拟机](8)--深入理解Class中--方法.属性表集合 之前有关class文件已经写了两篇博客: 1.[JVM虚拟机](5)---深入理解JVM-Class中常量池 2.[JVM虚拟机] ...