有关最短路径的最后一个算法——Dijkstra

迪杰斯特拉算法是由荷兰计算机科学家迪杰斯特拉于1959 年提出的,因此又叫迪杰斯特拉算法。是从一个顶点到其余各顶点的最短路径算法,解决的是有权图中最短路径问题。迪杰斯特拉算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。

本蒟蒻认为这个是最为重要的一个有关最短路径的算法

  Dijkstra使用了广度优先搜索解决赋权有向图或者无向图的单源最短路径问题,算法最终得到一个最短路径树。该算法常用于路由算法或者作为其他图算法的一个子模块。

  它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止。

  它主要采用的是一种贪心的策略,声明一个数组dis来保存源点到各个顶点的最短距离和一个保存已经找到了最短路径的顶点的集合:T,初始时,原点 s 的路径权重被赋为 0 (dis[s] = 0)。若对于顶点 s 存在能直接到达的边(s,m),则把dis[m]设为w(s, m),同时把所有其他(s不能直接到达的)顶点的路径长度设为无穷大。初始时,集合T只有顶点s。
然后,从dis数组选择最小值,则该值就是源点s到该值对应的顶点的最短路径,并且把该点加入到T中,OK,此时完成一个顶点,
  然后,我们需要看看新加入的顶点是否可以到达其他顶点并且看看通过该顶点到达其他点的路径长度是否比源点直接到达短,如果是,那么就替换这些顶点在dis中的值。
  最后,又从dis中找出最小值,重复上述动作,直到T中包含了图的所有顶点。

下面用以为大佬的图来举个例子

首先是相对来说较容易理解的代码

#include<bits/stdc++.h>
using namespace std;
inline int read()
{
int X=,w=;
char c=getchar();
while(c<''||c>'')
{
if (c=='-')
{
w=-;
c=getchar();
}
}
while(c>=''&&c<='')
{
X=(X<<)+(X<<)+c-'';
c=getchar();
}
return X*w;
}
const int maxn=;
int g[maxn][maxn];//g数组用来存储图;
int n,m,s;//分别表示点的个数、有向边的个数、出发点的编号;
bool vis[maxn];//表示是否已经到达过;
int d[maxn];//d[i]表示从询问点到点i的最短路径;
const int inf=;
int main ()
{
n=read(),m=read(),s=read();
for(int i=;i<=n;i++)
{
d[i]=inf;
for(int j=;j<=n;j++)
g[i][j]=inf;
g[i][i]=;//自己到自己的最短路径当然是0
}//初始化数组;
for(int i=;i<=m;i++)
{
int u=read(),v=read(),w=read();
//u,v,i分别表示第i条有向边的出发点、目标点和长度;
g[u][v]=w;//读入;
}
vis[s]=;//将起点标记成已经到达;
for(int i=;i<=n;i++)
d[i]=g[s][i];//将最短路径初始化;
//如果两点之间有路线就初始化为该距离,如果没有就还是inf;
while()
{
int stt_node=,stt_dis=inf;//stt=shortest 初始化两个变量
// stt_node表示最短路径的终点,stt_dis表示最短路径的长度
for(int i=;i<=n;i++)
{
if(vis[i]==&&d[i]<stt_dis)
//如果该点还没有到达,并且他的距离小于最短距离
{
stt_node=i,stt_dis=d[i];//更新变量
}
}
if(stt_node==) break;
//如果已经没有可以更新的最短路径了,就说明已经结束了
vis[stt_node]=;//将该点标记成已经到达
for(int i=;i<=n;i++)
{
if(vis[i]||g[stt_node][i]==inf)continue;
//如果并没有到达或者是两点之间没有路径,就跳出循环
d[i]=min(d[i],stt_dis+g[stt_node][i]);//更新最短路径
}
}
for(int i=;i<=n;i++)
printf("%d ",d[i]);
return ;
}

下面便是代码实现了qwq:

#include<bits/stdc++.h>
using namespace std;
int n,m;
const int nmax=,mmax=;
int fir[nmax],to[mmax],nxt[mmax],dis[mmax],ecnt;
void add(int u,int v,int w)
{
to[++ecnt]=v;
dis[ecnt]=w;
nxt[ecnt]=fir[u];
fir[u]=ecnt;
}
struct node
{
int x,d;
node(int x,int d):x(x),d(d){}
};
bool operator<(node a,node b)
{
return a.d>b.d;
}
int d[nmax];
bool vis[nmax];
void dijkstra(int s)
{
memset(vis,,sizeof(vis));
memset(d,-,sizeof(d));
priority_queue<node>q;
q.push(node(s,));
d[s]=;
while(!q.empty())
{
node h=q.top();
q.pop();
if(vis[h.x])continue;
vis[h.x]=;
for(int e=fir[h.x];e;e=nxt[e])
{
if(vis[to[e]])continue;
if(d[to[e]]==-)
{
d[to[e]]=h.d+dis[e];
}
else
{
d[to[e]]=min(d[to[e]],h.d+dis[e]);
}
vis[to[e]]=;
q.push(node(to[e],d[to[e]]));
}
}
}
int main()
{
cin>>n>>m;
for(int i=;i<=m;i++)
{
int u,v,w;
cin>>u>>v>>w;
add(u,v,w);
add(v,u,w);
}
dijkstra();
for(int i=;i<=n;i++)
{
cout<<d[i]<<' ';
}
}

Dijkstra【迪杰斯特拉算法】的更多相关文章

  1. c/c++ 图的最短路径 Dijkstra(迪杰斯特拉)算法

    c/c++ 图的最短路径 Dijkstra(迪杰斯特拉)算法 图的最短路径的概念: 一位旅客要从城市A到城市B,他希望选择一条途中中转次数最少的路线.假设途中每一站都需要换车,则这个问题反映到图上就是 ...

  2. 图解Dijkstra(迪杰斯特拉)算法+代码实现

    简介 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.Dijkstra算法是很有代表性的 ...

  3. (Dijkstra)迪杰斯特拉算法-最短路径算法

    迪杰斯特拉算法是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题.迪杰斯特拉算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止. 算法思想:设G=(V,E)是一个带权有向图 ...

  4. Dijkstra(迪杰斯特拉)算法求解最短路径

    过程 首先需要记录每个点到原点的距离,这个距离会在每一轮遍历的过程中刷新.每一个节点到原点的最短路径是其上一个节点(前驱节点)到原点的最短路径加上前驱节点到该节点的距离.以这个原则,经过N轮计算就能得 ...

  5. C# 迪杰斯特拉算法 Dijkstra

    什么也不想说,现在直接上封装的方法: using System; using System.Collections.Concurrent; using System.Collections.Gener ...

  6. 最短路径算法—Dijkstra(迪杰斯特拉)算法分析与实现(C/C++)

    Dijkstra算法 ———————————最后更新时间:2011.9.25———————————Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径. ...

  7. 图->最短路径->单源最短路径(迪杰斯特拉算法Dijkstra)

    文字描述 引言:如下图一个交通系统,从A城到B城,有些旅客可能关心途中中转次数最少的路线,有些旅客更关心的是节省交通费用,而对于司机,里程和速度则是更感兴趣的信息.上面这些问题,都可以转化为求图中,两 ...

  8. 最短路问题:迪杰斯特拉算法(Dijsktra)

    Dijkstra算法 1.定义概览 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.Di ...

  9. 最短路之Dijkstra(迪杰斯特拉)

    一般用法: Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.Dijkstra算法是很有代 ...

随机推荐

  1. MongoDB学习(查找文档和其他数据查找操作)

    理解Cursor对象和查询运算符 cursor对象 cursor对象相当于一个指针,可通过迭代它来访问MongdoDB数据库中的一组对象. 在使用 find() 方法查询时,返回的并非实际文档,而是一 ...

  2. Basic Linux Privilege Escalation

    (Linux) privilege escalation is all about: Collect - Enumeration, more enumeration and some more enu ...

  3. 重建程序员能力(2)-如何使asp.net mvc应用增加js和其他功能

    1. 在Visual Studio的解决方案资源管理器,找到项目右键展开右键菜单后选择 管理NuGet程序包. 2.在打开的页面中,可以按需要选择Jquery.BootStrap等页面展现框架. 有工 ...

  4. 【AO例子】生成TIN

    当然,通过GP生成也是可以的.这里介绍的是已经烂大街的生成方法. 上代码: public ITin CreateTin(IFeatureClass featureClass, IField Z, st ...

  5. window模拟linux环境-cygwin安装

    cygwin是一个在windows平台上运行的unix模拟环境,它对于学习unix/linux操作环境,或者从unix到windows的应用程序移植,非常有用.通过它,你就可以在不安装linux的情况 ...

  6. dede首页、列表页调用非缩略图

    在include/extend.func.php末尾添加 function firstimg($str_pic) { $str_sub=substr($str_pic,0,-7).strrchr($s ...

  7. 这20个常规Python语法你都搞明白了吗?

    Python简单易学,但又博大精深.许多人号称精通Python,却不会写Pythonic的代码,对很多常用包的使用也并不熟悉.学海无涯,我们先来了解一些Python中最基本的内容. Python的特点 ...

  8. HTML语义化的理解

    语义化的主要目的:用正确的标签做正确的事情. 语义化验证方法:css裸奔--去掉css样式,然后看页面是否还具有很好的可读性. 语义化意义 / 优点: 1.让页面的内容结构化 2.利于浏览器解析和SE ...

  9. 国产多维数据库 NeuralCube!中国人自己的大数据底层核心技术!

    商业转载请联系作者获得授权,非商业转载请注明出处. 提到‘数据库’,首先被想到的肯定是Oracle.DB2.SQL Server.MySql这些传统的关系型数据库.数据库的概念是非常宽泛的,除了上述的 ...

  10. SQL Server数据库漏洞评估了解一下

    SQL Server Management Studio 17.4或更高版本的SSMS中提供了SQL Server漏洞侦测(VA)功能,此功能允许SQL Server扫描您的数据库以查找潜在的安全漏洞 ...