求赞


大家好,我非常喜欢暴力数据结构,于是我用块状树过了这道题目

题目:

一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w。

我们将以下面的形式来要求你对这棵树完成一些操作:

I. CHANGE u t : 把结点u的权值改为t

II. QMAX u v: 询问从点u到点v的路径上的节点的最大权值

III. QSUM u v: 询问从点u到点v的路径上的节点的权值和

注意:从点u到点v的路径上的节点包括u和v本身


我们可以将树大约划分为\(\sqrt{n}\)块,每个块内维护到块内根节点的路径长度以及点权最大值,而且,显然,我们可以通过寻找它们的\(LCA\)来找到他们路径上的有关信息,而这里我们已经对树进行了分块。

所以在同一个块内的暴跳时间复杂度最坏为\(O(\sqrt{n})\)

在块与块之间的暴跳的时间复杂度最坏为\(O(\sqrt{n})\)

轻松AC本题目

代码中有较详细注释,贴代码

#include<bits/stdc++.h>
using namespace std;
const int maxn=1e5+10;
struct cc{
int to,nex;
}e[maxn],dis[maxn];
int head[maxn],cnt1,h[maxn],cnt2;
void add1(int u,int v)//原树边
{
++cnt1;
e[cnt1].to=v;
e[cnt1].nex=head[u];
head[u]=cnt1;
}
void add2(int u,int v)//分块后块内树边
{
++cnt2;
dis[cnt2].to=v;
dis[cnt2].nex=h[u];
h[u]=cnt2;
}
int rt[maxn],mx[maxn],sum[maxn],siz[maxn];
int n,m,v[maxn],deep[maxn],len,fa[maxn];
void dfs(int u,int f,int dep)
{
deep[u]=dep;
int tmp=rt[u];
fa[u]=f;
for(int i=head[u];i;i=e[i].nex)
{
int v=e[i].to;
if(v!=f)
{
if(siz[tmp]+1<len)
{
add2(u,v);//块内树连边
rt[v]=tmp;
++siz[tmp];
}
dfs(v,u,dep+1);
}
}
}
void build(int u,int num,int vmx)//维护当前节点,到块内根节点的和,最大值
{
num+=v[u],sum[u]=num;
vmx=max(vmx,v[u]),mx[u]=vmx;
for(int i=h[u];i;i=dis[i].nex)
build(dis[i].to,num,vmx);
}
int query(int a,int b,int tag)
{
int ans1=0;//QSUM
int ans2=-(1<<30);//QMAX
while(a!=b)//类似于倍增,只不过这里的距离为sqrt(n)
{
if(deep[a]<deep[b]) swap(a,b);
if(rt[a]==rt[b])//若所属同一个块
{
ans1+=v[a];
ans2=max(ans2,v[a]);
a=fa[a];//由于在同一块内,暴力跳的复杂度只为O(sqrt(n))
}
else
{
if(deep[rt[a]]<deep[rt[b]]) swap(a,b);//块的深度更深
ans1+=sum[a];
ans2=max(ans2,mx[a]);
a=fa[rt[a]];//直接跳一个块
}
}
ans1+=v[a];
ans2=max(ans2,v[a]);//更新它们的LCA的值
if(tag==0) return ans2;
else return ans1;
}
void change(int u,int x)
{
v[u]=x;
if(u==rt[u]) build(u,0,-(1<<30));//如果是块内根节点就整个块更新
else build(u,sum[fa[u]],mx[fa[u]]);//如果不是,就从其父亲开始更新
}
int main()
{
int x,y;
scanf("%d",&n);
len=sqrt(n);
for(int i=1;i<n;++i)
scanf("%d%d",&x,&y),add1(x,y),add1(y,x);//原树边
for(int i=1;i<=n;++i)
scanf("%d",&v[i]),rt[i]=i;
dfs(1,0,0);
for(int i=1;i<=n;++i)
if(rt[i]==i)
build(i,0,-(1<<30));
scanf("%d",&m);
char opt[30];
for(int i=1;i<=m;++i)
{
scanf("%s%d%d",opt,&x,&y);
if(opt[1]=='M')//QMAX
printf("%d\n",query(x,y,0));//01维护询问问题
else if(opt[1]=='S')//QSUM
printf("%d\n",query(x,y,1));//01维护询问问题
else //CHANGE
change(x,y);
}
return 0;
}

骗分过样例,暴力出奇迹!!!

洛谷 P2590 [ZJOI2008]树的统计的更多相关文章

  1. 洛谷——P2590 [ZJOI2008]树的统计(树链剖分模板练手)

    P2590 [ZJOI2008]树的统计 I. CHANGE u t : 把结点u的权值改为t II. QMAX u v: 询问从点u到点v的路径上的节点的最大权值 III. QSUM u v: 询问 ...

  2. 洛谷P2590 [ZJOI2008] 树的统计 [树链剖分]

    题目传送门 树的统计 题目描述 一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w. 我们将以下面的形式来要求你对这棵树完成一些操作: I. CHANGE u t : 把结点u的权值改为t ...

  3. 洛谷P2590 [ZJOI2008]树的统计 题解 树链剖分+线段树

    题目链接:https://www.luogu.org/problem/P2590 树链剖分模板题. 剖分过程要用到如下7个值: fa[u]:u的父节点编号: dep[u]:u的深度: size[u]: ...

  4. 洛谷 P2590 [ZJOI2008]树的统计(树链剖分)

    题目描述一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w. 我们将以下面的形式来要求你对这棵树完成一些操作: I. CHANGE u t : 把结点u的权值改为t II. QMAX u v ...

  5. [洛谷P2590][ZJOI2008]树的统计

    题目大意:一棵树,支持三个操作, $CHANGE\;u\;t:$ 把结点$u$的权值改为$t$ $QMAX\;u\;v:$ 询问从点$u$到点$v$的路径上的节点的最大权值 $QSUM\;u\;v:$ ...

  6. 洛谷——P2590 [ZJOI2008]树的统计

    https://www.luogu.org/problem/show?pid=2590#sub 题目描述 一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w. 我们将以下面的形式来要求你对这 ...

  7. 洛谷.2590.[ZJOI2008]树的统计(树分块)

    题目链接 Update:这种分块写法...可以被卡掉啊... 好像没有靠谱的树分块写法... /* 对树上节点进行分块,每个点记录dep,fa,val,Max,Sum,Max,Sum表示当前点在该块内 ...

  8. P2590 [ZJOI2008]树的统计(树链剖分)

    P2590 [ZJOI2008]树的统计 虽然是入门树剖模板 但是我终于1A了(大哭) 懒得写啥了(逃 #include<iostream> #include<cstdio> ...

  9. P2590 [ZJOI2008]树的统计(LCT)

    P2590 [ZJOI2008]树的统计 题目描述 一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w. 我们将以下面的形式来要求你对这棵树完成一些操作: I. CHANGE u t : 把 ...

随机推荐

  1. 用v-bind:style时的问题

    今天纠结了挺久一个问题,个人习惯是在HBuilder里先写好前端样式,在放.net去测试数据,但是发现一个问题 就是一个提示框跟随鼠标移动 提示框用v-bind:style绑定一个对象 DIV就是这句 ...

  2. Java运行时环境---ClassLoader类加载机制

    背景:听说ClassLoader类加载机制是进入BAT的必经之路. ClassLoader总述: 普通的Java开发其实用到ClassLoader的地方并不多,但是理解透彻ClassLoader类的加 ...

  3. HotSpot 虚拟机垃圾回收算法实现

    作为使用范围最广的虚拟机之一HotSpot,必须对垃圾回收算法的执行效率有严格的考量,只有这样才能保证虚拟机高效运行 枚举根节点 从可达性分析中从 GC Roots 节点找引用链这个操作为例,可以作为 ...

  4. H5与C3权威指南笔记--transition动画

    translation:过渡 举个栗子:transition: width 1s linear; transition有三个属性,分别是transition-property, transition- ...

  5. javascript排序算法-快速排序

    快速排序 概念: (1) 首先,从数组中选择中间一项作为主元. (2) 创建两个指针,左边一个指向数组第一个项,右边一个指向数组最后一个项.移动左指针直到我们找到一个比主元大的元素,接着,移动右指针直 ...

  6. (爬虫)urllib库

    一.爬虫简介 什么是爬虫?通俗来讲爬虫就是爬取网页数据的程序. 要了解爬虫,还需要了解HTTP协议和HTTPS协议:HTTP协议是超文本传输协议,是一种发布和接收HTML页面的传输协议:HTTPS协议 ...

  7. ZOJ 2480 - Simplest Task in Windows

    Simplest Task in Windows Time Limit: 2 Seconds      Memory Limit: 65536 KB A typical windows platfor ...

  8. js实现语音功能

    在项目中需要对ajax请求返回的消息进行语音播报.那么什么录制的就是在太low啦.下面js贴代码 str 为返回的data //语音播报function voiceAnnouncements(str) ...

  9. Asp.Net WebAPI配置接口返回数据类型为Json格式

    Asp.Net WebAPI配置接口返回数据类型为Json格式   一.默认情况下WebApi 对于没有指定请求数据类型类型的请求,返回数据类型为Xml格式 例如:从浏览器直接输入地址,或者默认的XM ...

  10. linux系统mysql-5.7 修改字符集

    起因:我在网上看修改mysql字符的文章时,都说配置/etc/mysql/my.cnf文件 然而我打开我上述的my.cnf文件时,发现里面的内容跟别人的不一样,我就觉得这个肯定不是正确的文件 经过我在 ...