D. BerDonalds
time limit per test

5 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

BerDonalds, a well-known fast food restaurant, is going to open a cafe in Bertown. The important thing is to choose the new restaurant's location so that it would be easy to get there. The Bertown road system is represented by n junctions, connected by m bidirectional roads. For each road we know its length. We also know that we can get from any junction to any other one, moving along the roads.

Your task is to find such location of the restaurant, that the shortest distance along the roads from the cafe to the farthest junction would be minimum. Note that the restaurant can be located not only on the junction, but at any point of any road.

Input

The first line contains two integers n and m () — the number of junctions and the number of roads, correspondingly. Then m lines follow, describing all Bertown roads. Each road is described by three integers ai, bi, wi(1 ≤ ai, bi ≤ n, ai ≠ bi; 1 ≤ wi ≤ 105), where ai and bi are the numbers of the junctions, connected by the i-th road, and wi is the length of the i-th road.

It is guaranteed that each road connects two distinct junctions, there is at most one road between any two junctions, and you can get from any junction to any other one.

Output

Print a single real number — the shortest distance from the optimal restaurant location to the farthest junction. The answer will be considered correct, if its absolute or relative error doesn't exceed 10 - 9.


比赛的时候想了一种做法;

先floyd,然后枚举每条边,在边上二分一个点使得这个点到其他点最大距离最小

但是一直WA,问题竟然是,这不是个单调函数是个单峰函数应该用三分!!!

然后貌似这个道卡三分了

二分是可以做的,直接二分答案ans,然后也是枚举每条边让其他点向这条边走ans距离,没有走到的地方覆盖,最后全覆盖了就是不可行

但是有复杂度更低的做法O(n^3)  参考http://www.cnblogs.com/lzqxh/archive/2013/03/05/2944834.html#2659117

枚举边后,对于每个点距离是min{d[u][i]+x,d[v][i]+L-x},是单峰函数,并且是一个折,所有点画出来长这样

最优解一定在最上面那条线的最低点取到

那就找所有交点

按照d[u][]大到小排序后,对于先后两个点a和b,他们的图像出现交点的条件就是d[v][a]<d[v][b]

还有一点,这个距离最多是个0.5  (这也解释了为什么本题精度那么奇怪)

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int N=,M=2e4+,INF=1e9+;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=x*+c-''; c=getchar();}
return x*f;
} int n,m,u,v,w;
struct data{
int u,v,w;
}a[M];
int d[N][N];
void floyd(){
for(int k=;k<=n;k++)
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
d[i][j]=min(d[i][j],d[i][k]+d[k][j]);
} int ans=INF;
int rnk[N][N],val[N];
bool cmp(int a,int b){return val[a]<val[b];}
void solve(){
floyd();
for(int i=;i<=n;i++){
for(int j=;j<=n;j++) rnk[i][j]=j,val[j]=d[i][j];
sort(rnk[i]+,rnk[i]++n,cmp);
//for(int j=1;j<=n;j++) printf("rnk %d %d %d\n",i,j,rnk[i][j]);
}
for(int i=;i<=n;i++) ans=min(ans,d[i][rnk[i][n]]<<);
for(int i=;i<=m;i++){
u=a[i].u,v=a[i].v,w=a[i].w;
for(int p=n,i=n-;i>=;i--){
if(d[v][rnk[u][i]]>d[v][rnk[u][p]]){//rnk[u][i] and rnk[u][p] has intersectioin
ans=min(ans,d[u][rnk[u][i]]+d[v][rnk[u][p]]+w);
p=i;
}
}
}
printf("%lf",ans/2.0);
} int main(){
n=read();m=read();
for(int i=;i<=n;i++) for(int j=i+;j<=n;j++) d[i][j]=d[j][i]=INF;
for(int i=;i<=m;i++){
a[i].u=read(),a[i].v=read(),a[i].w=read();
d[a[i].u][a[i].v]=d[a[i].v][a[i].u]=a[i].w;
}
solve();
}

CF266D. BerDonalds [图的绝对中心]的更多相关文章

  1. UML动态模型图简单介绍

    UML动态模型图描述了系统动态行为的各个方面,包括用例图.序列图.协作图.活动图和状态图.下面就每种图做一个简单介绍: 用例图 用例图描述系统外部的执行者与系统提供的用例之间的某种联系.所谓用例是指对 ...

  2. iOS10 UI教程视图的中心位置

    iOS10 UI教程视图的中心位置 center表示的是视图的中心位置属性,这个属性在相对的UI层次结构上工作,和frame类似.center属性是一个在父视图上定义视图的位置的简便方法.center ...

  3. 云计算和大数据时代网络技术揭秘(八)数据中心存储FCoE

    数据中心存储演化——FCoE   数据中心三大基础:主机 网络 存储 在云计算推动下,存储基础架构在发生演变 传统存储结构DAS.SAN在发展中遇到了布线复杂.能耗增多的缺点(原生性),需要对架构做根 ...

  4. [转载] Google数据中心网络技术漫谈

    原文: http://www.sdnlab.com/12700.html?from=timeline&isappinstalled=0#10006-weixin-1-52626-6b3bffd ...

  5. prefuse学习(二)显示一张图

    1.  把数据以点连线的方式在画面中显示 2.  数据按照数据的性别属性使用不同的颜色 3.  鼠标左键可以把图在画面中拖动 4.  鼠标右键可以把图放大或者缩小 5.  鼠标单击某个数据上,该数据点 ...

  6. H3C数据中心虚拟化解决方案技术白皮书

    缩略语清单: 缩略语 英文全名 中文解释 IDC Internet Data Center 互联网数据中心 VRF Virtual Router Forwarding 虚拟路由器转发 SMP Symm ...

  7. 图像Resize中0.5像素中心对齐的问题

    目录 0.5像素对齐的问题 0.5像素对齐的问题 1. 问题提出 在进行图像缩放时,偶尔会看到一些比较奇怪的代码,其中有一个就是0.5像素中心对齐的问题,例如在OpenCV线性插值的代码中有类似如下操 ...

  8. 【GNN】图神经网络小结

    图神经网络小结 图神经网络小结 图神经网络分类 GCN: 由谱方法到空域方法 GCN概述 GCN的输出机制 GCN的不同方法 基于谱方法的GCN 初始 切比雪夫K阶截断: ChebNet 一阶Cheb ...

  9. 思维导图VS金字塔原理

    作为常识,思维导图制作的核心元素是关键词,而金字塔原理制作的核心元素则是拓展的概要句子,这两种方式是当今人们常用的思维工具,本文对其做了对比,希望对你的选择有所帮助. 金字塔原理结构:从上到下三角形结 ...

随机推荐

  1. 详解:Python2中的urllib、urllib2与Python3中的urllib以及第三方模块requests

    在python2中,urllib和urllib2都是接受URL请求的相关模块,但是提供了不同的功能.两个最显著的不同如下: 1.urllib2可以接受一个Request类的实例来设置URL请求的hea ...

  2. 安装myeclipse后,打开时弹出:“该站点安全证书的吊销证书不可用”,怎样解决?

    1.当弹出"该站点安全证书的吊销信息不可用.是否继续?"的对话框时,点击"查看证书",切换到"详细信息"TAB页,找到其"CRL分 ...

  3. c++(合并排序)

    前面一篇博客提到的快速排序是排序算法中的一种经典算法.和快速排序一样,合并排序是另外一种经常使用的排序算法.那么合并排序算法有什么不同呢?关键之处就体现在这个合并上面.    合并算法的基本步骤如下所 ...

  4. oracle存储过程的创建和使用

    创建存储过程: 格式:create or replace procedure procedure_name(参数 参数类型) Is/as 变量1 变量1的类型: begin ----------业务逻 ...

  5. 从零开始学习前端开发 — 14、CSS3变形基础

    一.css3变形: transform:rotate(旋转)|scale(缩放)|skew(倾斜)|translate(位移); 注:当多种变形方式综合在一起时,用空格隔开 1.旋转 a) rotat ...

  6. debian 9 双显卡安装NVIDIA显卡驱动

    最近用debian,给debian装n卡驱动折腾了好几天了,主要还是网络不好,官方wiki的方法下载经常卡死..摸索了几天感觉已经摸到了头绪,决定写下来供大家参考参考 先提供单显卡NVIDIA驱动的安 ...

  7. WPF DataTrigger数据触发器

    1.通过绑定的属性值变化,动态改变界面的显示,比如绑定了IsExpanded,当为true,grid高度变成600,反之,grid高度变成320. <Grid.Style> <Sty ...

  8. (实用篇)使用PHP生成PDF文档

    http://mp.weixin.qq.com/s?__biz=MzIxMDA0OTcxNA==&mid=2654254929&idx=1&sn=8715d008d19af70 ...

  9. 从CUMT校园导航出现的问题看CSS布局设计(一) CSS盒模型

    先说说做的这个校园导航系统值得一提的内容: 1. 二级菜单栏  .iframe内嵌窗口(样式设计.用hover做效果) 2. 高德地图API (自定义底图样式.弹跳点.信息窗体.线路导航) 3. DO ...

  10. DALI 2.0解码模块

    DALI2.0调光解码模块使用手册 一.概述(联系人:张先生,电话:13923882807,QQ:813267849) 欢迎使用本公司的DALI 2.0解码模块,该模块支持"DALI第二套协 ...