学习TensorFlow,浅析MNIST的python代码
在github上,tensorflow的star是22798,caffe是10006,torch是4500,theano是3661。作为小码农的我,最近一直在学习tensorflow,主要使用python的接口进行学习。本博文主要以/tensorflow/tensorflow/models/image/mnist(github上下载)作为例程,讲解python代码的实现。
读代码的时候,建议大家理清主线,从主函数开始,调用到那个子函数时,再去阅读子函数的功能。我在minist的python代码中作了注解,以蓝色标出,希望对你有用。
安装tensorflow请参考:
1 http://blog.csdn.net/helei001/article/details/49799791
2 http://blog.csdn.net/helei001/article/details/51285951
# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Simple, end-to-end, LeNet-5-like convolutional MNIST model example.
This should achieve a test error of 0.7%. Please keep this model as simple and
linear as possible, it is meant as a tutorial for simple convolutional models.
Run with --self_test on the command line to execute a short self-test.
"""
#引入python模块,用于相关操作
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import gzip
import os
import sys
import time
import numpy
from six.moves import urllib
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
#定义参数:数据库下载地址,深度学习的参数设置
SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'
WORK_DIRECTORY = 'data'
IMAGE_SIZE = 28
NUM_CHANNELS = 1
PIXEL_DEPTH = 255
NUM_LABELS = 10
VALIDATION_SIZE = 5000 # Size of the validation set.
SEED = 66478 # Set to None for random seed.
BATCH_SIZE = 64
NUM_EPOCHS = 10
EVAL_BATCH_SIZE = 64
EVAL_FREQUENCY = 100 # Number of steps between evaluations.
tf.app.flags.DEFINE_boolean("self_test", False, "True if running a self test.")
FLAGS = tf.app.flags.FLAGS
#根据参数设置,下载相应数据
def maybe_download(filename):
"""Download the data from Yann's website, unless it's already here."""
if not tf.gfile.Exists(WORK_DIRECTORY):
tf.gfile.MakeDirs(WORK_DIRECTORY)
filepath = os.path.join(WORK_DIRECTORY, filename)
if not tf.gfile.Exists(filepath):
filepath, _ = urllib.request.urlretrieve(SOURCE_URL + filename, filepath)
with tf.gfile.GFile(filepath) as f:
size = f.Size()
print('Successfully downloaded', filename, size, 'bytes.')
return filepath
#读取下载文件的数据,转换成tensorflow识别的4维向量,并把数据归一化到[-0.5,0.5]
def extract_data(filename, num_images):
"""Extract the images into a 4D tensor [image index, y, x, channels].
Values are rescaled from [0, 255] down to [-0.5, 0.5].
"""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
bytestream.read(16)
buf = bytestream.read(IMAGE_SIZE * IMAGE_SIZE * num_images)
data = numpy.frombuffer(buf, dtype=numpy.uint8).astype(numpy.float32)
data = (data - (PIXEL_DEPTH / 2.0)) / PIXEL_DEPTH
data = data.reshape(num_images, IMAGE_SIZE, IMAGE_SIZE, 1)
return data
#提取图像数据对应的标签
def extract_labels(filename, num_images):
"""Extract the labels into a vector of int64 label IDs."""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
bytestream.read(8)
buf = bytestream.read(1 * num_images)
labels = numpy.frombuffer(buf, dtype=numpy.uint8).astype(numpy.int64)
return labels
def fake_data(num_images):
"""Generate a fake dataset that matches the dimensions of MNIST."""
data = numpy.ndarray(
shape=(num_images, IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS),
dtype=numpy.float32)
labels = numpy.zeros(shape=(num_images,), dtype=numpy.int64)
for image in xrange(num_images):
label = image % 2
data[image, :, :, 0] = label - 0.5
labels[image] = label
return data, labels
#计算错误率
def error_rate(predictions, labels):
"""Return the error rate based on dense predictions and sparse labels."""
return 100.0 - (
100.0 *
numpy.sum(numpy.argmax(predictions, 1) == labels) /
predictions.shape[0])
def main(argv=None): # pylint: disable=unused-argument
if FLAGS.self_test:
print('Running self-test.')
train_data, train_labels = fake_data(256)
validation_data, validation_labels = fake_data(EVAL_BATCH_SIZE)
test_data, test_labels = fake_data(EVAL_BATCH_SIZE)
num_epochs = 1
else:
# Get the data. #定义下载的文件名,调用maybe_download函数进行下载
train_data_filename = maybe_download('train-images-idx3-ubyte.gz')
train_labels_filename = maybe_download('train-labels-idx1-ubyte.gz')
test_data_filename = maybe_download('t10k-images-idx3-ubyte.gz')
test_labels_filename = maybe_download('t10k-labels-idx1-ubyte.gz')
# Extract it into numpy arrays.#调用extract_data和extract_labels提取训练和测试的图像数据和对应标签
train_data = extract_data(train_data_filename, 60000)
train_labels = extract_labels(train_labels_filename, 60000)
test_data = extract_data(test_data_filename, 10000)
test_labels = extract_labels(test_labels_filename, 10000)
# Generate a validation set.#在训练数据里划分训练集和验证集,以及整个训练集的训练次数
validation_data = train_data[:VALIDATION_SIZE, ...]
validation_labels = train_labels[:VALIDATION_SIZE]
train_data = train_data[VALIDATION_SIZE:, ...]
train_labels = train_labels[VALIDATION_SIZE:]
num_epochs = NUM_EPOCHS
train_size = train_labels.shape[0]
# This is where training samples and labels are fed to the graph.
# These placeholder nodes will be fed a batch of training data at each
# training step using the {feed_dict} argument to the Run() call below.
#定义训练数据及标签,验证数据的输入节点以及数据结构格式
train_data_node = tf.placeholder(
tf.float32,
shape=(BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS))
train_labels_node = tf.placeholder(tf.int64, shape=(BATCH_SIZE,))
eval_data = tf.placeholder(
tf.float32,
shape=(EVAL_BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS))
# The variables below hold all the trainable weights. They are passed an
# initial value which will be assigned when we call:
# {tf.initialize_all_variables().run()}
#定义存储网络参数的变量,每次训练只是更新迭代各个变量的值,实际上,我们也可以从这里推测出网络的结构
conv1_weights = tf.Variable(
tf.truncated_normal([5, 5, NUM_CHANNELS, 32], # 5x5 filter, depth 32.
stddev=0.1,
seed=SEED))
conv1_biases = tf.Variable(tf.zeros([32]))
conv2_weights = tf.Variable(
tf.truncated_normal([5, 5, 32, 64],
stddev=0.1,
seed=SEED))
conv2_biases = tf.Variable(tf.constant(0.1, shape=[64]))
fc1_weights = tf.Variable( # fully connected, depth 512.
tf.truncated_normal(
[IMAGE_SIZE // 4 * IMAGE_SIZE // 4 * 64, 512],
stddev=0.1,
seed=SEED))
fc1_biases = tf.Variable(tf.constant(0.1, shape=[512]))
fc2_weights = tf.Variable(
tf.truncated_normal([512, NUM_LABELS],
stddev=0.1,
seed=SEED))
fc2_biases = tf.Variable(tf.constant(0.1, shape=[NUM_LABELS]))
# We will replicate the model structure for the training subgraph, as well
# as the evaluation subgraphs, while sharing the trainable parameters.
#定义网络graph的结构,每个层之间实际上是一种依赖的输入输出关系,建议把graph画出来,理解起来就很清楚了
def model(data, train=False):
"""The Model definition."""
# 2D convolution, with 'SAME' padding (i.e. the output feature map has
# the same size as the input). Note that {strides} is a 4D array whose
# shape matches the data layout: [image index, y, x, depth].
conv = tf.nn.conv2d(data,
conv1_weights,
strides=[1, 1, 1, 1],
padding='SAME')
# Bias and rectified linear non-linearity.
relu = tf.nn.relu(tf.nn.bias_add(conv, conv1_biases))
# Max pooling. The kernel size spec {ksize} also follows the layout of
# the data. Here we have a pooling window of 2, and a stride of 2.
pool = tf.nn.max_pool(relu,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding='SAME')
conv = tf.nn.conv2d(pool,
conv2_weights,
strides=[1, 1, 1, 1],
padding='SAME')
relu = tf.nn.relu(tf.nn.bias_add(conv, conv2_biases))
pool = tf.nn.max_pool(relu,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding='SAME')
# Reshape the feature map cuboid into a 2D matrix to feed it to the
# fully connected layers.
pool_shape = pool.get_shape().as_list()
reshape = tf.reshape(
pool,
[pool_shape[0], pool_shape[1] * pool_shape[2] * pool_shape[3]])
# Fully connected layer. Note that the '+' operation automatically
# broadcasts the biases.
hidden = tf.nn.relu(tf.matmul(reshape, fc1_weights) + fc1_biases)
# Add a 50% dropout during training only. Dropout also scales
# activations such that no rescaling is needed at evaluation time.
if train:
hidden = tf.nn.dropout(hidden, 0.5, seed=SEED)
return tf.matmul(hidden, fc2_weights) + fc2_biases
#定义网络的loss和正则项,即优化的目标函数,用于误差反传
# Training computation: logits + cross-entropy loss.
logits = model(train_data_node, True)
loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(
logits, train_labels_node))
# L2 regularization for the fully connected parameters.
regularizers = (tf.nn.l2_loss(fc1_weights) + tf.nn.l2_loss(fc1_biases) +
tf.nn.l2_loss(fc2_weights) + tf.nn.l2_loss(fc2_biases))
# Add the regularization term to the loss.
loss += 5e-4 * regularizers
# 定义优化目标函数时,学习率,梯度动量的迭代策略
# Optimizer: set up a variable that's incremented once per batch and
# controls the learning rate decay.
batch = tf.Variable(0)
# Decay once per epoch, using an exponential schedule starting at 0.01.
learning_rate = tf.train.exponential_decay(
0.01, # Base learning rate.
batch * BATCH_SIZE, # Current index into the dataset.
train_size, # Decay step.
0.95, # Decay rate.
staircase=True)
# Use simple momentum for the optimization.
optimizer = tf.train.MomentumOptimizer(learning_rate,
0.9).minimize(loss,
global_step=batch)
# 预测当前输出,以及利用训练好的模型预测验证集的输出
# Predictions for the current training minibatch.
train_prediction = tf.nn.softmax(logits)
# Predictions for the test and validation, which we'll compute less often.
eval_prediction = tf.nn.softmax(model(eval_data))
# Small utility function to evaluate a dataset by feeding batches of data to
# {eval_data} and pulling the results from {eval_predictions}.
# Saves memory and enables this to run on smaller GPUs.
# 为了节约内存,每次使用较小size的数据进行验证,比如batch size等
def eval_in_batches(data, sess):
"""Get all predictions for a dataset by running it in small batches."""
size = data.shape[0]
if size < EVAL_BATCH_SIZE:
raise ValueError("batch size for evals larger than dataset: %d" % size)
predictions = numpy.ndarray(shape=(size, NUM_LABELS), dtype=numpy.float32)
for begin in xrange(0, size, EVAL_BATCH_SIZE):
end = begin + EVAL_BATCH_SIZE
if end <= size:
predictions[begin:end, :] = sess.run(
eval_prediction,
feed_dict={eval_data: data[begin:end, ...]})
else:
batch_predictions = sess.run(
eval_prediction,
feed_dict={eval_data: data[-EVAL_BATCH_SIZE:, ...]})
predictions[begin:, :] = batch_predictions[begin - size:, :]
return predictions
# 在定义好graph,目标函数以及优化策略的基础上,使用seesion在硬件上执行计算。每次迭代都是batch size的数据集,每隔一定迭代次数后,输出损失函数,学习率,训练误差,以及验证误差。
# Create a local session to run the training.
start_time = time.time()
with tf.Session() as sess:
# Run all the initializers to prepare the trainable parameters.
tf.initialize_all_variables().run()
print('Initialized!')
# Loop through training steps.
for step in xrange(int(num_epochs * train_size) // BATCH_SIZE):
# Compute the offset of the current minibatch in the data.
# Note that we could use better randomization across epochs.
offset = (step * BATCH_SIZE) % (train_size - BATCH_SIZE)
batch_data = train_data[offset:(offset + BATCH_SIZE), ...]
batch_labels = train_labels[offset:(offset + BATCH_SIZE)]
# This dictionary maps the batch data (as a numpy array) to the
# node in the graph it should be fed to.
feed_dict = {train_data_node: batch_data,
train_labels_node: batch_labels}
# Run the graph and fetch some of the nodes.
_, l, lr, predictions = sess.run(
[optimizer, loss, learning_rate, train_prediction],
feed_dict=feed_dict)
if step % EVAL_FREQUENCY == 0:
elapsed_time = time.time() - start_time
start_time = time.time()
print('Step %d (epoch %.2f), %.1f ms' %
(step, float(step) * BATCH_SIZE / train_size,
1000 * elapsed_time / EVAL_FREQUENCY))
print('Minibatch loss: %.3f, learning rate: %.6f' % (l, lr))
print('Minibatch error: %.1f%%' % error_rate(predictions, batch_labels))
print('Validation error: %.1f%%' % error_rate(
eval_in_batches(validation_data, sess), validation_labels))
sys.stdout.flush()
# 利用训练好的模型预测测试集,并输出测试误差
# Finally print the result!
test_error = error_rate(eval_in_batches(test_data, sess), test_labels)
print('Test error: %.1f%%' % test_error)
if FLAGS.self_test:
print('test_error', test_error)
assert test_error == 0.0, 'expected 0.0 test_error, got %.2f' % (
test_error,)
if __name__ == '__main__':
tf.app.run()
学习TensorFlow,浅析MNIST的python代码的更多相关文章
- 风炫安全web安全学习第三十二节课 Python代码执行以及代码防御措施
风炫安全web安全学习第三十二节课 Python代码执行以及代码防御措施 Python 语言可能发生的命令执行漏洞 内置危险函数 eval和exec函数 eval eval是一个python内置函数, ...
- 深度学习模型stacking模型融合python代码,看了你就会使
话不多说,直接上代码 def stacking_first(train, train_y, test): savepath = './stack_op{}_dt{}_tfidf{}/'.format( ...
- 常用正则表达式最强汇总(含Python代码举例讲解+爬虫实战)
大家好,我是辰哥~ 本文带大家学习正则表达式,并通过python代码举例讲解常用的正则表达式 最后实战爬取小说网页:重点在于爬取的网页通过正则表达式进行解析. 正则表达式语法 Python的re模块( ...
- tensorflow学习笔记——使用TensorFlow操作MNIST数据(2)
tensorflow学习笔记——使用TensorFlow操作MNIST数据(1) 一:神经网络知识点整理 1.1,多层:使用多层权重,例如多层全连接方式 以下定义了三个隐藏层的全连接方式的神经网络样例 ...
- tensorflow学习笔记——使用TensorFlow操作MNIST数据(1)
续集请点击我:tensorflow学习笔记——使用TensorFlow操作MNIST数据(2) 本节开始学习使用tensorflow教程,当然从最简单的MNIST开始.这怎么说呢,就好比编程入门有He ...
- 深度学习-tensorflow学习笔记(2)-MNIST手写字体识别
深度学习-tensorflow学习笔记(2)-MNIST手写字体识别超级详细版 这是tf入门的第一个例子.minst应该是内置的数据集. 前置知识在学习笔记(1)里面讲过了 这里直接上代码 # -*- ...
- tensorflow学习笔记————分类MNIST数据集
在使用tensorflow分类MNIST数据集中,最容易遇到的问题是下载MNIST样本的问题. 一般是通过使用tensorflow内置的函数进行下载和加载, from tensorflow.examp ...
- python3.4学习笔记(二十六) Python 输出json到文件,让json.dumps输出中文 实例代码
python3.4学习笔记(二十六) Python 输出json到文件,让json.dumps输出中文 实例代码 python的json.dumps方法默认会输出成这种格式"\u535a\u ...
- python3.4学习笔记(二十五) Python 调用mysql redis实例代码
python3.4学习笔记(二十五) Python 调用mysql redis实例代码 #coding: utf-8 __author__ = 'zdz8207' #python2.7 import ...
随机推荐
- 勤拂拭软件系列教程 之 Android开发之旅
勤拂拭软件工作室持续推出Android开发系列教程与案例,供广大朋友分享交流技术经验,帮助喜欢Android的朋友们学习进步: 1. 勤拂拭软件Android开发之旅(1) 之 Android 开发环 ...
- 网络硬盘NFS
NFS是网络文件系统,用于计算机间共享文件系统,由sun公司1985年推出的协议,现在已经被广泛使用.一般来说,所有的linux发型版都支持NFS.nfs是一个服务器,客户端的架构,建立一个nfs的服 ...
- 某些情况下调用函数为什么要在函数名前加“(void)”
我们知道,在定义函数时,加在函数名前的"void"表示该函数没有返回值.但在调用时,在函数名前加"(void)"的作用又是什么呢? 最明显的一点就是表示程序并不 ...
- box-sizing position
box-sizing 属性 用于更改用于计算元素宽度和高度的默认的 CSS 盒子模型.可以使用此属性来模拟不正确支持CSS盒子模型规范的浏览器的行为. /* 关键字 值 */ box-sizing: ...
- 如何在 vmware esxi 中开放 VNC功能及端口实现远程管理 完整篇
VMWare esxi中开放 VNC功能及端口实现远程管理 完整篇 在多个论坛上看了相关文章,总的写得不完整.现将各方资源整编写完整版.详文如下! (图片来自51CTO) 步骤1. 修改ESXi主机的 ...
- servlet的web-xml配置详解
<?xml version="1.0" encoding="UTF-8"?> <web-app xmlns:xsi="http:// ...
- Nginx+Tomca+Redis实现负载均衡、资源分离、session共享
目标实现:Nginx作为负载均衡后端多Tomcat实例,通过Redis实现Session共享. 操作系统环境:CentOS 6.8 SSH:SecureCRT 其中 Nginx服务:80端口 Tomc ...
- Lintcode392 Is Subsequence solution 题解
[题目描述] Given a string s and a string t, check if s is subsequence of t. You may assume that there is ...
- 110个oracle常用函数总结
. ASCII 返回与指定的字符对应的十进制数; SQL) zero,ascii( ) space from dual; A A ZERO SPACE --------- --------- ---- ...
- 剑指架构师系列-Redis集群部署
初步搭建Redis集群 克隆已经安装Redis的虚拟机,我们使用这两个虚拟机中的Redis来搭建集群. master:192.168.2.129 端口:7001 slave:192.168.2.132 ...