[HNOI2004]树的计数
题目描述
输入输出格式
输入格式:
输入文件第一行是一个正整数n,表示树有n个结点。第二行有n个数,第i个数表示di,即树的第i个结点的度数。其中1<=n<=150,输入数据保证满足条件的树不超过10^17个。
输出格式:
输出满足条件的树有多少棵。
输入输出样输入样例#1:
4
2 1 2 1
2
Prüfer编码与Cayley公式
给出几个链接:
http://www.matrix67.com/blog/archives/682
http://blog.csdn.net/justesss/article/details/38129101
http://blog.csdn.net/yuyanggo/article/details/49951597
总的来说,就是说:
1.n个节点的生成树有n^(n-2)
2.对于n个点,度为di
方案数=(n-2)!/(∏(di-1)!)
对于这题直接套第2个公式
分解质因子再化简
注意判断树能否构成
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int d[],n,vis[],prime[],pre[],tot,sum;
long long s[],ans;
long long qpow(long long x,int y)
{
long long res=;
while (y)
{
if (y&) res=res*x;
x=x*x;
y=y/;
}
return res;
}
int main()
{
int i,j;
cin>>n;
for (i=; i<=n; i++)
{
scanf("%d",&d[i]);
if (d[i]==&&!=n)
{
cout<<;
return ;
}
sum+=d[i]-;
for (j=; j<=d[i]-; j++)
s[j]--;
}
if (sum!=n-)
{
cout<<;
return ;
}
for (i=; i<=n-; i++)
s[i]++;
for (i=; i<=n; i++)
{
if (vis[i]==)
{
pre[i]=i;
tot++;
prime[tot]=i;
}
for (j=; j<=tot; j++)
{
if (prime[j]*i>n) break;
vis[i*prime[j]]=;
pre[i*prime[j]]=prime[j];
if (i%prime[j]==) break;
}
}
ans=;
for (i=n; i>=; i--)
if (pre[i]!=i)
{
s[pre[i]]+=s[i];
s[i/pre[i]]+=s[i];
s[i]=;
}
for (i=n; i>=; i--)
{
if (s[i]<)
{
cout<<;
return ;
}
ans*=qpow(i,s[i]);
}
cout<<ans;
}
[HNOI2004]树的计数的更多相关文章
- BZOJ1211: [HNOI2004]树的计数
1211: [HNOI2004]树的计数 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1245 Solved: 383[Submit][Statu ...
- BZOJ 1211: [HNOI2004]树的计数( 组合数学 )
知道prufer序列就能写...就是求个可重集的排列...先判掉奇怪的情况, 然后答案是(N-2)!/π(d[i]-1)! -------------------------------------- ...
- 【BZOJ 1211】 1211: [HNOI2004]树的计数 (prufer序列、计数)
1211: [HNOI2004]树的计数 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2468 Solved: 868 Description 一 ...
- bzoj1211: [HNOI2004]树的计数 prufer编码
题目链接 bzoj1211: [HNOI2004]树的计数 题解 prufer序 可重排列计数 代码 #include<bits/stdc++.h> using namespace std ...
- bzoj 1211: [HNOI2004]树的计数 -- purfer序列
1211: [HNOI2004]树的计数 Time Limit: 10 Sec Memory Limit: 162 MB Description 一个有n个结点的树,设它的结点分别为v1, v2, ...
- 【算法】Prüfer编码 —— HNOI2004树的计数
的确,如果不知道这个编码的话的确是一脸懵逼.在这里放一篇认为讲的很详细的 BLOG,有关于编码的方式 & 扩展在里面都有所提及. 欢迎点此进入 --> 大佬的博客 在这里主要想推导一下最 ...
- prufer BZOJ1211: [HNOI2004]树的计数
以前做过几题..好久过去全忘了. 看来是要记一下... [prufer] n个点的无根树(点都是标号的,distinct)对应一个 长度n-2的数列 所以 n个点的无根树有n^(n-2)种 树 转 p ...
- Luogu P2290 [HNOI2004]树的计数 Prufer序列+组合数
最近碰了$prufer$ 序列和组合数..于是老师留了一道题:P2624 [HNOI2008]明明的烦恼 qwq要用高精... 于是我们有了弱化版:P2290 [HNOI2004]树的计数(考一样的可 ...
- bzoj1211: [HNOI2004]树的计数(prufer序列+组合数学)
1211: [HNOI2004]树的计数 题目:传送门 题解: 今天刚学prufer序列,先打几道简单题 首先我们知道prufer序列和一颗无根树是一一对应的,那么对于任意一个节点,假设这个节点的度数 ...
- P2290 [HNOI2004]树的计数
P2290 [HNOI2004]树的计数prufer序列模板题 #include <iostream> #include <cstdio> #include <queue ...
随机推荐
- transient 与 volatile 笔记
1. transient 词义:瞬间的,短暂的 首先说说"序列化",把一个对象的表示转化为字节流的过程称为串行化(也称为序列化,serialization),从字节流中把对象重建出 ...
- webview缓存及跳转时截取url地址、监听页面变化
缓存及一些设定 我在做一些项目时,h5做的项目手机浏览器能使用,但是在搬到webview时候不能用,这个时候通过查阅资料,原来是webview没有设定好,包括缓存.缓存大小及路径等等 mWebview ...
- SDOI2017 相关分析
把两个式子拆开 Σ(xi-px)(yi-py) =Σ xiyi + py * Σ xi - px * Σ yi + Σ 1* px * py Σ (xi-px)² = Σ xi² + px * Σ ...
- 第二篇:Python数据类型
一.引子 1.什么是数据? x= #是我们要存储的数据 2.为何数据要分不同的类型 数据是用来表示状态的,不同的状态就应该用不同的类型的数据去表示 3.数据类型 数字(整型,长整型,浮点型,复数) 字 ...
- nyoj 回文字符串
回文字符串 时间限制:3000 ms | 内存限制:65535 KB 难度:4 描述 所谓回文字符串,就是一个字符串,从左到右读和从右到左读是完全一样的,比如"aba".当 ...
- 九、Python发送QQ邮件(SMTP)
看了廖雪峰老师的教程: 一封电子邮件的旅程就是 发件人 -> MUA -> MTA -> MTA -> 若干个MTA -> MDA <- MUA <- 收件人 ...
- Linux的rsync 配置,用于服务器之间远程传大量的数据
[教程主题]:rsync [课程录制]: 创E [主要内容] [1] rsync介绍 Rsync(Remote Synchronize) 是一个远程资料同步工具,可通过LAN/WAN快速同步多台主机, ...
- 使用 slf4j抽象日志层 和 其他日志实现对接
前言 如果你正在提供一个开源的Java-jar,那么让你的项目仅依赖slf4j-api然后让你的用户在他们开发和运营环境中选择任意的日志实现绝对是个好想法,.作为终端用户,他们可以快速地从上面提到的日 ...
- JDBC学习笔记 day1
JDBC的基本概念: JDBC就是java database connectivity,即java数据库连接. JDBC主要完成的几个任务分别为 与数据库建立一个连接 向数据库发送SQL语句 处理数据 ...
- matlab等高线绘制
参考代码: figure;// Figure建立新的图形 z=double(z); x=1:length(z); y=x; [X2,Y2]=meshgrid(x,y); subplot(121); [ ...