拓展Lucas+容斥原理

 #include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#include<vector>
#include<cmath>
#include<queue>
#define MAXN 10000+10
#define INF 0x7f7f7f7f
#define LINF 0x7f7f7f7f7f7f7f7f
#define ll long long
#define pb push_back
#define ft first
#define sc second
#define mp make_pair
#define pil pair<int,ll>
#define pll pair<ll,ll>
using namespace std;
struct Lucas{
void extgcd(ll a,ll b,ll &x,ll &y){
if(!b){x=,y=;}
else{
ll xx,yy;
extgcd(b,a%b,xx,yy);
x=yy;
y=xx-a/b*yy;
}
}
ll Inv(ll a,ll b){
ll x,y;
extgcd(a,b,x,y);
x=(x%b+b)%b;
if(!x)x+=b;
return x;
}
ll Pow(ll a,ll b,ll p){
ll ret=1LL;
while(b){
if(b&){(ret*=a)%=p;}
(a*=a)%=p;
b>>=;
}
return ret;
}
ll fac(ll n,ll pi,ll pk){
if(!n)return 1LL;
ll ret=1LL;
for(ll i=;i<pk;i++){
if(i%pi)(ret*=i)%=pk;
}
ret=Pow(ret,n/pk,pk);
for(ll i=;i<=(n%pk);i++){
if(i%pi)(ret*=i)%=pk;
}
return ret*fac(n/pi,pi,pk)%pk;
}
ll C(ll n,ll m,ll pi,ll pk){
ll a=fac(n,pi,pk),b=fac(m,pi,pk),c=fac(n-m,pi,pk);
ll t=0LL;
for(ll i=n/pi;i;i/=pi)t+=i;
for(ll i=m/pi;i;i/=pi)t-=i;
for(ll i=(n-m)/pi;i;i/=pi)t-=i;
ll ret=a*Inv(b,pk)*Inv(c,pk)%pk;
(ret*=Pow(pi,t,pk))%=pk;
return ret;
}
ll n,m,p;
vector<pll> pn;
ll init(ll pp){
p=pp;
ll x=sqrt(pp*1.0);
for(ll i=;i<=x;i++){
if(pp%i==){
ll pk=1LL;
while(pp%i==){
pp/=i;
pk*=i;
}
pn.pb(mp(i,pk));
}
}
if(pp^){
pn.pb(mp(pp,pp));
}
}
ll solve(ll n,ll m){
ll ans=0LL,pi,pk;
for(int i=;i<pn.size();i++){
pi=pn[i].ft,pk=pn[i].sc;
ll t=C(n,m,pi,pk);
(t*=(p/pk))%=p;
(t*=Inv(p/pk,pk))%=p;
(ans+=t)%=p;
}
return ans;
}
}L;
int T,n,n1,n2,m;
int a[];
ll ans,p;
ll calc(ll n,ll m){
return L.solve(m+n-,min(m,n-));
}
void rc(int k,int m,int f){
if(m<)return;
ans+=f*calc(n,m);
ans=(ans%p+p)%p;
for(int i=k+;i<=n1;i++){
rc(i,m-a[i],-f);
}
}
void solve(){
scanf("%d%d%d%d",&n,&n1,&n2,&m);
m-=n;
for(int i=;i<=n1;i++){
scanf("%d",&a[i]);
}
int t;
for(int i=;i<=n2;i++){
scanf("%d",&t);
m-=(t-);
}
if(m<){
printf("0\n");
return;
}
ans=0LL;
rc(,m,);
printf("%lld\n",ans);
}
int main()
{
//freopen("data.in","r",stdin);
scanf("%d%lld",&T,&p);
L.init(p);
while(T--){
solve();
}
return ;
}

BZOJ3129: [Sdoi2013]方程的更多相关文章

  1. bzoj3129[Sdoi2013]方程 exlucas+容斥原理

    3129: [Sdoi2013]方程 Time Limit: 30 Sec  Memory Limit: 256 MBSubmit: 582  Solved: 338[Submit][Status][ ...

  2. bzoj千题计划267:bzoj3129: [Sdoi2013]方程

    http://www.lydsy.com/JudgeOnline/problem.php?id=3129 如果没有Ai的限制,就是隔板法,C(m-1,n-1) >=Ai 的限制:m减去Ai &l ...

  3. BZOJ3129 SDOI2013方程(容斥原理+扩展lucas)

    没有限制的话算一个组合数就好了.对于不小于某个数的限制可以直接减掉,而不大于某个数的限制很容易想到容斥,枚举哪些超过限制即可. 一般情况下n.m.p都是1e9级别的组合数没办法算.不过可以发现模数已经 ...

  4. BZOJ3129 [Sdoi2013]方程 【扩展Lucas】

    题目 给定方程 X1+X2+. +Xn=M 我们对第l..N1个变量进行一些限制: Xl < = A X2 < = A2 Xn1 < = An1 我们对第n1 + 1..n1+n2个 ...

  5. 【BZOJ3129】[SDOI2013]方程(容斥,拓展卢卡斯定理)

    [BZOJ3129][SDOI2013]方程(容斥,拓展卢卡斯定理) 题面 BZOJ 洛谷 题解 因为答案是正整数,所先给每个位置都放一个就行了,然后\(A\)都要减一. 大于的限制和没有的区别不大, ...

  6. BZOJ_3129_[Sdoi2013]方程_组合数学+容斥原理

    BZOJ_3129_[Sdoi2013]方程_组合数学+容斥原理 Description 给定方程     X1+X2+. +Xn=M 我们对第l..N1个变量进行一些限制: Xl < = A ...

  7. [SDOI2013]方程

    ...最近考了一道数学题.是典型的隔板问题. P.S.最近八中oj上面没有系统地刷过题 题面可以直接转化为m个球分到n个箱子,每个箱子至少放1个,前n1个箱子的球数必须满足全部小于等于A[i],接着n ...

  8. [BZOJ 3129] [Sdoi2013] 方程 【容斥+组合数取模+中国剩余定理】

    题目链接:BZOJ - 3129 题目分析 使用隔板法的思想,如果没有任何限制条件,那么方案数就是 C(m - 1, n - 1). 如果有一个限制条件是 xi >= Ai ,那么我们就可以将 ...

  9. BZOJ 3129 [SDOI2013]方程 (拓展Lucas)

    题目大意:给定一个方程$X_{1}+X_{2}+X_{3}+X_{4}+...+X_{n}=M$,$\forall X_{i}<=A_{i} (i<=n1)$ $\forall X_{i} ...

随机推荐

  1. Beta敏捷冲刺每日报告——Day2

    1.情况简述 Beta阶段Scrum Meeting 敏捷开发起止时间 2017.11.2 00:00 -- 2017.11.3 00:00 讨论时间地点 2017.11.2 晚9:30,电话会议会议 ...

  2. webview缓存及跳转时截取url地址、监听页面变化

    缓存及一些设定 我在做一些项目时,h5做的项目手机浏览器能使用,但是在搬到webview时候不能用,这个时候通过查阅资料,原来是webview没有设定好,包括缓存.缓存大小及路径等等 mWebview ...

  3. 201621123027 《Java程序设计》第1周学习总结

    01621123027 <Java程序设计>第1周学习总结 1.本周学习总结 关键词:总概.承接.面向对象化 ​ 我认为第一周的Java学习是一些总结概括性质的内容,在比较联系之前学习过的 ...

  4. JAVA线程池原理详解(1)

    线程池的优点 1.线程是稀缺资源,使用线程池可以减少创建和销毁线程的次数,每个工作线程都可以重复使用. 2.可以根据系统的承受能力,调整线程池中工作线程的数量,防止因为消耗过多内存导致服务器崩溃. 线 ...

  5. java希尔排序

    java希尔排序 1.基本思想: 希尔排序也成为"缩小增量排序",其基本原理是,现将待排序的数组元素分成多个子序列,使得每个子序列的元素个数相对较少,然后对各个子序列分别进行直接插 ...

  6. js数组string对象api常用方法

    charAt() 方法可返回指定位置的字符. stringObject.charAt(index) indexOf() 方法可返回某个指定的字符串值在字符串中首次出现的位置. stringObject ...

  7. 使用pie.htc时Border-radius的兼容

    如果一个图层中(navin)使用了pie.htc来对ie6,7,8进行兼容,如若上一层(navwrap)的样式中有背景的属性,则此层 (navin) 在ie6,7,8中背景颜色不显示.如下图:此部分的 ...

  8. C++中构造函数的初始化列表(const、引用&变量初始化)

    1. 构造函数执行分为两个阶段: a.初始化阶段(初始化) 初始化阶段具体指的是用构造函数初始化列表方式来初始化类中的数据成员. ClassXX:val(a),key(b){}; b.普通计算阶段(赋 ...

  9. python/基础输出输入用法

    输出及输入的简单用法 print print,中文意思是打印,在python里它不是往纸上打印,而是打印在命令行,或者叫终端.控制台里面.print是python里很基本很常见的一个操作,它的操作对象 ...

  10. 详解Class

    Classs是es6提供的类,相当于es5的构造函数. 写法: class Foo { constructor () { // new 的时候会调用该方法,可以通过return改变构造函数的返回值 r ...