题目描述

传说很久以前,大地上居住着一种神秘的生物:地精。

地精喜欢住在连绵不绝的山脉中。具体地说,一座长度为N的山脉H可分为从左到右的N段,每段有一个[b][u]独一无二[/u][/b]的高度Hi,其中Hi是1到N之间的正整数。

如果一段山脉比所有与它相邻的山脉都高,则这段山脉是一个山峰。位于边缘的山脉只有一段相邻的山脉,其他都有两段(即左边和右边)。

类似地,如果一段山脉比所有它相邻的山脉都低,则这段山脉是一个山谷。

地精们有一个共同的爱好——饮酒,酒馆可以设立在山谷之中。地精的酒馆不论白天黑夜总是人声鼎沸,地精美酒的香味可以飘到方圆数里的地方。

地精还是一种非常警觉的生物,他们在每座山峰上都可以设立瞭望台,并轮流担当瞭望工作,以确保在第一时间得知外敌的入侵。

地精们希望这N段山脉每段都可以修建瞭望台或酒馆的其中之一,只有满足这个条件的整座山脉才可能有地精居住。

现在你希望知道,长度为N的可能有地精居住的山脉有多少种。两座山脉A和B不同当且仅当存在一个i,使得Ai≠Bi。由于这个数目可能很大,你只对它除以P的余数感兴趣。

输入输出格式

输入格式:

输入文件goblin.in仅含一行,两个正整数N, P。

输出格式:

输出文件goblin.out仅含一行,一个非负整数,表示你所求的答案对P取余之后的结果。

输入输出样例

输入样例#1:

4 7
输出样例#1:

3

说明

说明:共有10种可能的山脉,它们是:

1[u]3[/u]2[u]4[/u] 1[u]4[/u]2[u]3[/u] [u]2[/u]1[u]4[/u]3 2[u]3[/u]1[u]4[/u] 2[u]4[/u]1[u]3[/u]

[u]3[/u]1[u]4[/u]2 [u]3[/u]2[u]4[/u]1 3[u]4[/u]1[u]2[/u] [u]4[/u]1[u]3[/u]2 [u]4[/u]2[u]3[/u]1

其中加下划线的数位表示可以设立瞭望台的山峰,其他表示可以设立酒馆的山谷。

【数据规模和约定】

对于20%的数据,满足N≤10;

对于40%的数据,满足N≤18;

对于70%的数据,满足N≤550;

对于100%的数据,满足3≤N≤4200,P≤109。

求波动序列的个数

首先,了解波动序列的对称性

序列如果为 1 4 2 5 3

对称序列为 5 2 4 1 3

如果原序列开始递减,那么同n+1减每个数,就变成了递减序列的对称递增序列

所以我们只需要求递增序列,乘2就是总个数

设 f [i] [j] 为 排列 [ 1 , i ] 中开头为 j 的且第一段上升的方案数

这个方案数可以递推而来

根据引理,

如果j 和 j-1 不相邻 , 把抖动序列中的 j 和 j-1 交换仍然得到一个抖动序列,而且是一一对应的

或者j 和 j-1 相邻 ,这部分方案数来自于 f [ i-1 , i-j+1]

去掉 j ,则区间变为[1,j-1]并[j+1,i]

把[j+1,i]下移一位,则变为[1,i-1],那么只要再求出这部分第一段下降的方案数即可

根据 引理3, 求出f[i-1][(i-1)-(j-1)+1]加上即可

最后*2

是因为我们求的是第一部分为上升的

下降只需引理3一遍就可以

则方程 f[i][j]=f[i][j-1]+f[i-1][i-j+1];

再给出一种更易懂的方法:

f[i][0/1]i表示最高位的数字,0表示开始是上升,1表示开始是下降。

为什么会推出这个?

1、因为所谓抖动序列和每个数的具体值没有关系,只与它的大小有关系,

2、在下一个循环中,枚举开头数字,所以只和上一种情况的最高位有关,在数位依次递增的时候循环开头的每个情况即可。

例: 若为1、 2、 3、 4、 5:

开始是2, 后面是1、 3、 4、 5,分别对应4个数时的1 、2、 3、 4;

转移条件即为上一次递推 <2 上升 作为最高位为 2 的下降方案数

上一次递推 >=2 下降 作为最高位为 2 的上升方案数

在搞上前缀和+后缀和优化,减掉一维 就可以n^2出解

 #include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
using namespace std;
long long ans,f[][];
int n,Mod;
int main()
{int now,nxt,i,j;
cin>>n>>Mod;
now=;nxt=;
f[][]=;
for (i=;i<=n;i++)
{
for (j=;j<=i;j++)
f[nxt][j]=(f[nxt][j-]+f[now][i-j+])%Mod;
swap(nxt,now);
}
for (i=;i<=n;i++)
{
ans=(ans+f[now][i])%Mod;
}
cout<<(ans*)%Mod;
}

[SDOI2010]地精部落的更多相关文章

  1. BZOJ 1925: [Sdoi2010]地精部落( dp )

    dp(i,j)表示1~i的排列中, 以1~j为开头且开头是下降的合法方案数 这种数列具有对称性, 即对于一个满足题意且开头是上升的n的排列{an}, 令bn = n-an+1, 那么{bn}就是一个满 ...

  2. BZOJ_1925_[Sdoi2010]地精部落_递推

    BZOJ_1925_[Sdoi2010]地精部落_递推 Description 传说很久以前,大地上居住着一种神秘的生物:地精. 地精喜欢住在连绵不绝的山脉中.具体地说,一座长度为 N 的山脉 H可分 ...

  3. 【BZOJ1925】[SDOI2010]地精部落(动态规划)

    [BZOJ1925][SDOI2010]地精部落(动态规划) 题面 BZOJ 洛谷 题解 一道性质\(dp\)题.(所以当然是照搬学长PPT了啊 先来罗列性质,我们称题目所求的序列为抖动序列: 一个抖 ...

  4. 1925: [Sdoi2010]地精部落

    1925: [Sdoi2010]地精部落 Time Limit: 10 Sec Memory Limit: 64 MB Submit: 1929 Solved: 1227 [Submit][Statu ...

  5. 【BZOJ1925】[Sdoi2010]地精部落 组合数+DP

    [BZOJ1925][Sdoi2010]地精部落 Description 传说很久以前,大地上居住着一种神秘的生物:地精. 地精喜欢住在连绵不绝的山脉中.具体地说,一座长度为 N 的山脉 H可分 为从 ...

  6. [BZ1925] [SDOI2010]地精部落

    [BZ1925] [SDOI2010]地精部落 传送门 一道很有意思的DP题. 我们发现因为很难考虑每个排列中的数是否使用过,所以我们想到只维护相对关系. 当我们考虑新的一个位置时,给新的位置的数分配 ...

  7. [bzoj1925][Sdoi2010]地精部落_递推_动态规划

    地精部落 bzoj-1925 Sdoi-2010 题目大意:给你一个数n和模数p,求1~n的排列中满足每一个数的旁边两个数,要么一个是边界,要么都比它大,要么都比它小(波浪排列个数) 注释:$1\le ...

  8. bzoj1925 [Sdoi2010] 地精部落【DP】

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1925 一个多月前“过”了这道题,还自欺欺人地认为懂了这道题,这直接导致了昨晚多校联测2的T3 ...

  9. BZOJ1925[SDOI2010]地精部落

    Description 传说很久以前,大地上居住着一种神秘的生物:地精. 地精喜欢住在连绵不绝的山脉中.具体地说,一座长度为 N 的山脉 H可分 为从左到右的 N 段,每段有一个独一无二的高度 Hi, ...

  10. bzoj 1925 [Sdoi2010]地精部落(DP)

    Description 传说很久以前,大地上居住着一种神秘的生物:地精. 地精喜欢住在连绵不绝的山脉中.具体地说,一座长度为 N 的山脉 H可分 为从左到右的 N 段,每段有一个独一无二的高度 Hi, ...

随机推荐

  1. Beta No.6

    今天遇到的困难: github服务器响应很慢 推图的API接口相应较慢,超过了初始设定的最大延迟时间,导致了无法正确返回图片 ListView滑动删除Demo出现了某些Bug,这些Bug可能导致了某些 ...

  2. 20162330 实验一 《Java开发环境的熟悉》 实验报告

    2016-2017-2 实验报告目录: 1 2 3 4 5 20162330 实验一 <Java开发环境的熟悉> 实验报告 课程名称:<程序设计与数据结构> 学生班级:1623 ...

  3. 201621123050 《Java程序设计》第2周学习总结

    1.本周学习总结 java的数据类型 基本数据类型:介绍了java特有的boolean 引用数据类型 String:不变性:需要频繁修改时使用StringBuilder 包装类:自动拆.装箱 数组 一 ...

  4. JAVA面向对象的多态性

    什么是多态?简而言之就是相同的行为,不同的实现. 而多态也分为静态多态(重载).动态多态(重写)和动态绑定. 静态动态,实际就是指的重载的概念,是系统在编译时,就能知晓该具体调用哪个方法.动态多态指在 ...

  5. Faster R-CNN 的 RPN 是啥子?

     Faster R-CNN,由两个模块组成: 第一个模块是深度全卷积网络 RPN,用于 region proposal; 第二个模块是Fast R-CNN检测器,它使用了RPN产生的region p ...

  6. thinkphp中ajax技术

    thinkphp可以直接返回json数据,json数据事可以跟前端的js通用的

  7. Mego(1) - NET中主流ORM框架性能对比

    从刚刚开始接触ORM到现在已有超过八年时间,用过了不少ORM框架也了解了不少ORM框架,看过N种关于ORM框架的相关资料与评论,各种言论让人很难选择.在ORM的众多问题中最突出的问题是关于性能方面的问 ...

  8. Spring源码阅读-spring启动

    web.xml web.xml中的spring容器配置 <listener> <listener-class>org.springframework.web.context.C ...

  9. HTTP协议扫盲(八 )响应报文之 Transfer-Encoding=chunked方式

    一.什么是chunked编码? 分块传输编码(Chunked transfer encoding)是只在HTTP协议1.1版本(HTTP/1.1)中提供的一种数据传送机制.以往HTTP的应答中数据是整 ...

  10. maven入门(7)maven项目(组件)的坐标

    1.为什么要定义Maven坐标      在我们开发Maven项目的时候,需要为其定义适当的坐标,这是Maven强制要求的.在这个基础上,其他Maven项目才能应用该项目生成的构件. 2.Maven坐 ...