洛谷3794 签到题IV
题目描述
给定一个长度为n的序列$a_1,a_2...a_n$,其中每个数都是正整数。
你需要找出有多少对(i,j),$1 \leq i \leq j \leq n$且$gcd(a_i,a_{i+1}...a_j)~xor~(a_i~or~a_{i+1}~or~...~or~a_j)=k$,其中xor表示二进制异或,or表示二进制或。
输入输出格式
输入格式:
第一行两个整数n、k。
第二行n个整数$a_1,a_2...a_n$。
输出格式:
输出合法的(i,j)的对数。
输入输出样例
输入样例#1: 复制
5 6
2 4 3 4 2
输出样例#1: 复制
8
说明
对于30%的数据,$n \leq 500$。
对于60%的数据,$n \leq 100000$。
对于100%的数据,$1 \leq n,a_i \leq 500000$。
先枚举左端点,显然随着右端点右移,gcd不会增加,or不会减小
而且gcd每次减小最大为原来1/2,所以相同的gcd共可以分成logn块,实际上远远达不到
还有一个性质a^b^a=b
所以gcd^or^gcd=k^gcd=or
这样对于gcd相同的区间,用二分求出符合条件的or数量
用ST表维护x~y的gcd和or,而且了log要预处理,这样会快一些
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long lol;
int GCD[][],OR[][],Log[],n,k;
lol ans;
int gcd(int a,int b)
{
if (!b) return a;
return gcd(b,a%b);
}
int getg(int x,int y)
{
int d=Log[(y-x+)];
return gcd(GCD[x][d],GCD[y-(<<d)+][d]);
}
int getor(int x,int y)
{
int d=Log[(y-x+)];
return OR[x][d]|OR[y-(<<d)+][d];
}
int find(int x,int l,int g)
{
int r=n,as=l;
while (l<=r)
{
int mid=(l+r)/;
int G=getg(x,mid);
if (G==g) as=mid,l=mid+;
else r=mid-;
}
return as;
}
void query(int d,int x,int l,int r)
{
int L=l,R=r,as1=,as2=-;
while (l<=r)
{
int mid=(l+r)/;
int o=getor(x,mid);
if (o==d) as1=mid,r=mid-;
if (o<d) l=mid+;
if (o>d) r=mid-;
}
while (L<=R)
{
int mid=(L+R)/;
int o=getor(x,mid);
if (o==d) as2=mid,L=mid+;
if (o<d) L=mid+;
if (o>d) R=mid-;
}
ans+=as2-as1+;
}
int main()
{int i,x,pos,j;
cin>>n>>k;
for (i=;i<=n;i++)
{
scanf("%d",&x);
GCD[i][]=x;
OR[i][]=x;
}
for (i=;i<=n;i++)
Log[i]=Log[i/]+;
for (i=;i<=;i++)
{
for (j=;j<=n;j++)
if (j+(<<i)-<=n)
{
GCD[j][i]=gcd(GCD[j][i-],GCD[j+(<<i-)][i-]);
OR[j][i]=OR[j][i-]|OR[j+(<<i-)][i-];
}
}
for (i=;i<=n;i++)
{
for (j=i;j<=n;j=pos+)
{
int g=getg(i,j);
pos=find(i,j,g);
query(g^k,i,j,pos);
}
}
cout<<ans;
}
洛谷3794 签到题IV的更多相关文章
- A 洛谷 P3601 签到题 [欧拉函数 质因子分解]
题目背景 这是一道签到题! 建议做题之前仔细阅读数据范围! 题目描述 我们定义一个函数:qiandao(x)为小于等于x的数中与x不互质的数的个数. 这题作为签到题,给出l和r,要求求. 输入输出格式 ...
- 洛谷P3601签到题(欧拉函数)
题目背景 这是一道签到题! 建议做题之前仔细阅读数据范围! 题目描述 我们定义一个函数:qiandao(x)为小于等于x的数中与x不互质的数的个数. 这题作为签到题,给出l和r,要求求. 输入输出格式 ...
- 洛谷 P3601 签到题
https://www.luogu.org/problemnew/show/P3601 一道关于欧拉函数的题. 读完题目以后我们知道所谓的$aindao(x)=x- \phi (x) $. 对于x小的 ...
- [Luogu 3794]签到题IV
Description 题库链接 给定长度为 \(n\) 的序列 \(A\).求有多少子段 \([l,r]\) 满足 \[ \left(\gcd_{l\leq i\leq r}A_i\right) \ ...
- 洛谷P3601 签到题
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...
- 洛谷P3764 签到题 III
题目背景 pj组选手zzq近日学会了求最大公约数的辗转相除法. 题目描述 类比辗转相除法,zzq定义了一个奇怪的函数: typedef long long ll; ll f(ll a,ll b) { ...
- 【noip】跟着洛谷刷noip题2
noip好难呀. 上一个感觉有点长了,重开一个. 36.Vigenère 密码 粘个Openjudge上的代码 #include<cstdio> #include<iostream& ...
- [洛谷P1707] 刷题比赛
洛谷题目连接:刷题比赛 题目背景 nodgd是一个喜欢写程序的同学,前不久洛谷OJ横空出世,nodgd同学当然第一时间来到洛谷OJ刷题.于是发生了一系列有趣的事情,他就打算用这些事情来出题恶心大家-- ...
- 洛谷P5274 优化题(ccj)
洛谷P5274 优化题(ccj) 题目背景 CCJCCJ 在前往参加 Universe \ OIUniverse OI 的途中... 题目描述 有一个神犇 CCJCCJ,他在前往参加 Universe ...
随机推荐
- 听翁恺老师mooc笔记(11)--结构和函数
结构作为函数参数: 声明了一个结构就有了一种自定义的数据类型,这个数据类型和int.float.double一样,int等基本类型可以作为函数的参数,那么这种个自定义的结构类型也应该可以作为函数参数, ...
- Beta第二天
听说
- 冲刺NO.2
Alpha冲刺第二天 站立式会议 项目进展 团队成员在确定了所需技术之后,开始学习相关技术的使用,其中包括了HTML5,CSS与SSH框架等开发技术.并且在项目分工配合加以总结和完善,对现有发现的关于 ...
- 第二次作业:APP案例分析
App案例分析 产品:三国杀-页游手游双通 选择理由 当今社会手机已经渐渐取代了电脑在人们日常生活的需求,既然要选择APP进行案例分析,首推的估计就是手机APP了.三国杀是陪伴我高中时代的主要娱乐方式 ...
- Hibernate之HQL
SQL语句的DML操作不外乎:增,删,改,查 增加 : save(),persist() 删除 : delete() 改动 : update() 查询 : get() ,load() 其 ...
- 6块300G SCSI RAID5,两块硬盘损坏的数据恢复总结
[用户单位]XXXX网站[数据恢复故障描述]DELL POWEREDGE 2850服务器,内置6块300G SCSI硬盘 ,组成RAID5,安装LINUX REDHAT 4操作系统,存储大量照片,文件 ...
- 使用caffe训练mnist数据集 - caffe教程实战(一)
个人认为学习一个陌生的框架,最好从例子开始,所以我们也从一个例子开始. 学习本教程之前,你需要首先对卷积神经网络算法原理有些了解,而且安装好了caffe 卷积神经网络原理参考:http://cs231 ...
- .NET Core/.NET之Stream简介
之前写了一篇C#装饰模式的文章提到了.NET Core的Stream, 所以这里尽量把Stream介绍全点. (都是书上的内容) .NET Core/.NET的Streams 首先需要知道, Syst ...
- 记一次向maven中央仓库提交依赖包
Maven是Java中最常用的依赖管理工具,Maven的中央仓库保罗万象,涵盖了各个领域的框架.工具和文档,也是Java生态强大生命力的体现.我们自己开发的一些有用有趣的代码也可以通过打包上传到mav ...
- Linux系统把/home重新挂载到其他硬盘或分区
一开始没有做好规划,导致/home空间不足,再加上分区表不是GPT,导致无法扩展超过2T,因此需要重新划分一块更大的硬盘给/home. 1.把新挂载的4T硬盘进行分区和格式化 2.创建目录 sudo ...