Description

题库链接

给你一张 \(N\times M\) 的棋盘。要求每行每列最多放两个棋子,问总方案数。

\(1\leq N,M\leq 100\)

Solution

记 \(f_{i,j,k}\) 为前 \(i\) 行还剩 \(j\) 行可以放 \(1\) 个棋子, \(k\) 行放两个棋子的方案数。组合数学乱搞就好了。

Code

//It is made by Awson on 2018.3.17
#include <bits/stdc++.h>
#define LL long long
#define dob complex<double>
#define Abs(a) ((a) < 0 ? (-(a)) : (a))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
#define writeln(x) (write(x), putchar('\n'))
#define lowbit(x) ((x)&(-(x)))
using namespace std;
const int N = 100, yzh = 9999973;
void read(int &x) {
char ch; bool flag = 0;
for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || 1); ch = getchar());
for (x = 0; isdigit(ch); x = (x<<1)+(x<<3)+ch-48, ch = getchar());
x *= 1-2*flag;
}
void print(unsigned LL x) {if (x > 9) print(x/10); putchar(x%10+48); }
void write(unsigned LL x) {if (x < 0) putchar('-'); print(Abs(x)); } int f[N+5][N+5][N+5], n, m, C[N+5][N+5]; void work() {
for (int i = 0; i <= N; i++) {
C[i][0] = 1;
for (int j = 1; j <= i; j++) C[i][j] = (C[i-1][j]+C[i-1][j-1])%yzh;
}
read(n), read(m);
f[0][0][m] = 1;
for (int i = 1; i <= n; i++)
for (int j = 0; j <= m; j++)
for (int k = 0; k <= m; k++)
for (int p = 0; p <= 2; p++)
for (int q = 0; q+p <= 2; q++)
(f[i][j+q][k] += 1ll*f[i-1][j+p][k+q]*C[j+p][p]%yzh*C[k+q][q]%yzh) %= yzh;
int ans = 0;
for (int i = 0; i <= m; i++) for (int j = 0; j <= m; j++) (ans += f[n][i][j]) %= yzh;
writeln(ans);
}
int main() {
work(); return 0;
}

[AHOI 2009]chess 中国象棋的更多相关文章

  1. BZOJ 1801: [Ahoi2009]chess 中国象棋( dp )

    dp(i, j, k)表示考虑了前i行, 放了0个炮的有j列, 放了1个炮的有k列. 时间复杂度O(NM^2) -------------------------------------------- ...

  2. BZOJ_1801_[Ahoi2009]chess 中国象棋_DP

    BZOJ_1801_[Ahoi2009]chess 中国象棋_DP Description 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置方法,中国像 ...

  3. 【BZOJ1801】[Ahoi2009]chess 中国象棋 DP

    [BZOJ1801][Ahoi2009]chess 中国象棋 Description 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置方法,中国像棋中炮 ...

  4. BZOJ1801 Ahoi2009 chess 中国象棋 【DP+组合计数】*

    BZOJ1801 Ahoi2009 chess 中国象棋 Description 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置方法,中国像棋中炮的行 ...

  5. Bzoj 1081 [Ahoi2009] chess 中国象棋

    bzoj 1081 [Ahoi2009] chess 中国象棋 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1801 状态比较难设,的确 ...

  6. BZOJ1801 [Ahoi2009]chess 中国象棋(DP, 计数)

    题目链接 [Ahoi2009]chess 中国象棋 设$f[i][j][k]$为前i行,$j$列放了1个棋子,$k$列放了2个棋子的方案数 分6种情况讨论,依次状态转移. #include <b ...

  7. bzoj1801: [Ahoi2009]chess 中国象棋(DP)

    1801: [Ahoi2009]chess 中国象棋 题目:传送门 题解: 表示自己的DP菜的抠脚 %题解... 定义f[i][j][k]表示前i行 仅有一个棋子的有j列 有两个棋子的有k个 的方案数 ...

  8. [luogu2051][bzoj1801][AHOI2009]chess中国象棋【动态规划】

    题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法.大家肯定很清楚,在中国象棋中炮的行走方式是 ...

  9. bzoj 1801: [Ahoi2009]chess 中国象棋

    Description 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置方法,中国像棋中炮的行走方式大家应该很清楚吧. Input 一行包含两个整数N, ...

随机推荐

  1. Property 'id' not found on type java.lang.String

    改为 忘写了$符,取不出来,因此报错!

  2. 【django之权限组件】

    一.需求分析 RBAC(Role-Based Access Control,基于角色的访问控制),就是用户通过角色与权限进行关联.简单地说,一个用户拥有若干角色,一个角色拥有若干权限.这样,就构造成& ...

  3. 关于DLL的创建与使用简单描述(C++、C#)

    前言 前一段时间在学关于DLL的创建与调用,结果发现网络上一大堆别人分享的经验都有点问题.现在整理分享一下自己的方法. 工具 Microsoft Visual Studio 2017 depends ...

  4. Struts2之配置

    Struts2的默认配置文件是struts.xml放在/web-inf/classes目录下,struts配置文件的最大作用就是配置Action与请求之间的对应关系,并配置逻辑视图名和物理视图名之间的 ...

  5. 2017 清北济南考前刷题Day 4 afternoon

    期望得分:30+50+30=110 实际得分:40+0+0=40 并查集合并再次写炸... 模拟更相减损术的过程 更相减损术,差一定比被减数小,当被减数=减数时,停止 对于同一个减数来说,会被减 第1 ...

  6. faster-rcnn 结构杂谈

    faster-rcnn结构图: (只截取了最难理解的部分) 这个网络看似很复杂,但是理解了其中关键的层,就基本可以掌握这个结构了.要看源码!!要看源码!!要看源码 !!重要的事情说三遍. 关键的层: ...

  7. jsp文件调用本地文件的方法(Tomcat server.xml 设置虚拟目录)

    JSP文件: <video id="my-video" class="video-js" controls preload="auto" ...

  8. Node入门教程(2)第一章:NodeJS 概述

    Node 概述 什么是 Node Node.js® is a JavaScript runtime built on Chrome's V8 JavaScript engine. Node.js us ...

  9. Python 简单聊天室

    #coding=utf-8 from socket import * from threading import Thread import time udpSocket = socket(AF_IN ...

  10. mingw打dll ,lib包命令和调用

    1,下面的命令行将这个代码编译成 dll. gcc mydll.c -shared -o mydll.dll -Wl,--out-implib,mydll.lib 其中 -shared 告诉gcc d ...