Description

  监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种。如果
相邻房间的犯人的宗教相同,就可能发生越狱,求有多少种状态可能发生越狱

Input

  输入两个整数M,N.1<=M<=10^8,1<=N<=10^12

Output

  可能越狱的状态数,模100003取余

Sample Input

2 3

Sample Output

6

HINT

  6种状态为(000)(001)(011)(100)(110)(111)

题解

只有刷水题才能维持生活...酱紫...

 //It is made by Awson on 2018.1.13
#include <set>
#include <map>
#include <cmath>
#include <ctime>
#include <queue>
#include <stack>
#include <cstdio>
#include <string>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
using namespace std;
const int MOD = ;
void read(LL &x) {
char ch; bool flag = ;
for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || ); ch = getchar());
for (x = ; isdigit(ch); x = (x<<)+(x<<)+ch-, ch = getchar());
x *= -*flag;
}
void write(LL x) {
if (x > ) write(x/);
putchar(x%+);
} LL n, m; LL quick_pow(LL a, LL b) {
b %= MOD-; a %= MOD; LL ans = ;
while (b) {
if (b&) ans = ans*a%MOD;
a = a*a%MOD, b >>= ;
}
return ans;
}
void work() {
read(m), read(n);
write((quick_pow(m, n)-m*quick_pow(m-, n-)%MOD+MOD)%MOD);
}
int main() {
work();
return ;
}

[HNOI 2008]越狱的更多相关文章

  1. [补档][HNOI 2008]GT考试

    [HNOI 2008]GT考试 题目 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字. 他的不吉利数学A1A2... ...

  2. 【HNOI 2008】 越狱

    [题目链接] 点击打开链接 [算法] 显然,越狱情况数 = 总情况数 - 不能越狱的情况数 很容易发现,总情况数 = M^N 不能越狱的情况数怎么求呢? 我们发现,不能越狱的情况,其实就是第一个人任选 ...

  3. 【BZOJ】【1008】【HNOI】越狱

    快速幂 大水题= = 正着找越狱情况不好找,那就反过来找不越狱的情况呗…… 总方案是$m^n$种,不越狱的有$m*(m-1)^{n-1}$种= = 负数搞搞就好了…… 莫名奇妙地T了好几发…… /** ...

  4. 【BZOJ 1005】【HNOI 2008】明明的烦恼

    http://www.lydsy.com/JudgeOnline/problem.php?id=1005 答案是\[\frac{(n-2)!}{(n-2-sum)!×\prod_{i=1}^{cnt} ...

  5. 【BZOJ 1043】【HNOI 2008】下落的圆盘 判断圆相交+线段覆盖

    计算几何真的好暴力啊. #include<cmath> #include<cstdio> #include<cstring> #include<algorit ...

  6. 【BZOJ 1007】【HNOI 2008】水平可见直线 解析几何

    之前机房没网就做的这道题,用的解析几何判断交点横坐标 #include<cmath> #include<cstdio> #include<cstring> #inc ...

  7. [bzoj 1004][HNOI 2008]Cards(Burnside引理+DP)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1004 分析: 1.确定方向:肯定是组合数学问题,不是Polya就是Burnside,然后题目上 ...

  8. BZOJ 1010 玩具装箱toy(四边形不等式优化DP)(HNOI 2008)

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...

  9. HNOI 2008:水平可见直线

    Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为 可见的,否则Li为被覆盖的. 例如,对于直线: L1:y ...

随机推荐

  1. 【Spring源码深度解析学习系列】默认标签解析(三)

    Spring的标签包括默认标签和自定义标签两种 默认标签的解析方法: ###DefaultBeanDefinitionDocumentReader.java### private void parse ...

  2. JavaScript(第三十二天)【Ajax】

    2005年Jesse James Garrett发表了一篇文章,标题为:"Ajax:A new Approach to Web Applications".他在这篇文章里介绍了一种 ...

  3. 配置 CSV Data Set Config 来参数化新增客户信息操作

    1.首先根据新增客户信息的http请求,来确定需要参数化的变量,选取符合测试需求且经常变化或未来会变化的变量为需要参数化的变量,如本文中的客户端名称(sys_name).描述(description) ...

  4. 关于c++停止工作

    出现这样情况有两种原因 : 1未初始化 2用scanf未用符号& 3当0做分母时

  5. Beta Scrum Day 7

    听说

  6. 201621123060《JAVA程序设计》第十四周学习总结

    1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结与数据库相关内容. 2. 使用数据库技术改造你的系统 2.1 简述如何使用数据库技术改造你的系统.要建立什么表?截图你的表设计. 用 ...

  7. Beta版本展示

    Beta版本展示 开发团队:MyGod 团队成员:程环宇 张芷祎 王田路 张宇光 王婷婷 源码地址:https://github.com/WHUSE2017/MyGod MyGod团队项目的目标: 让 ...

  8. exports

    暴露函数 var bar = require("./bar.js"); var msg = "你好"; var info = "呵呵"; f ...

  9. 【iOS】swift-Binary operator '|' cannot be applied to two UIViewAutoresizing operands

    let view = UIView(frame: CGRect(x: 0, y: 0, width: 320, height: 568)) addSubview(view) view.autoresi ...

  10. 个人技术博客(alpha)

    APP的权限校验不同于web网页端,web一般使用session记录用户的状态信息,而app则使用token令牌来记录用户信息.有这样一个场景,系统的数据量达到千万级,需要几台服务器部署,当一个用户在 ...