Description

  监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种。如果
相邻房间的犯人的宗教相同,就可能发生越狱,求有多少种状态可能发生越狱

Input

  输入两个整数M,N.1<=M<=10^8,1<=N<=10^12

Output

  可能越狱的状态数,模100003取余

Sample Input

2 3

Sample Output

6

HINT

  6种状态为(000)(001)(011)(100)(110)(111)

题解

只有刷水题才能维持生活...酱紫...

 //It is made by Awson on 2018.1.13
#include <set>
#include <map>
#include <cmath>
#include <ctime>
#include <queue>
#include <stack>
#include <cstdio>
#include <string>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
using namespace std;
const int MOD = ;
void read(LL &x) {
char ch; bool flag = ;
for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || ); ch = getchar());
for (x = ; isdigit(ch); x = (x<<)+(x<<)+ch-, ch = getchar());
x *= -*flag;
}
void write(LL x) {
if (x > ) write(x/);
putchar(x%+);
} LL n, m; LL quick_pow(LL a, LL b) {
b %= MOD-; a %= MOD; LL ans = ;
while (b) {
if (b&) ans = ans*a%MOD;
a = a*a%MOD, b >>= ;
}
return ans;
}
void work() {
read(m), read(n);
write((quick_pow(m, n)-m*quick_pow(m-, n-)%MOD+MOD)%MOD);
}
int main() {
work();
return ;
}

[HNOI 2008]越狱的更多相关文章

  1. [补档][HNOI 2008]GT考试

    [HNOI 2008]GT考试 题目 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字. 他的不吉利数学A1A2... ...

  2. 【HNOI 2008】 越狱

    [题目链接] 点击打开链接 [算法] 显然,越狱情况数 = 总情况数 - 不能越狱的情况数 很容易发现,总情况数 = M^N 不能越狱的情况数怎么求呢? 我们发现,不能越狱的情况,其实就是第一个人任选 ...

  3. 【BZOJ】【1008】【HNOI】越狱

    快速幂 大水题= = 正着找越狱情况不好找,那就反过来找不越狱的情况呗…… 总方案是$m^n$种,不越狱的有$m*(m-1)^{n-1}$种= = 负数搞搞就好了…… 莫名奇妙地T了好几发…… /** ...

  4. 【BZOJ 1005】【HNOI 2008】明明的烦恼

    http://www.lydsy.com/JudgeOnline/problem.php?id=1005 答案是\[\frac{(n-2)!}{(n-2-sum)!×\prod_{i=1}^{cnt} ...

  5. 【BZOJ 1043】【HNOI 2008】下落的圆盘 判断圆相交+线段覆盖

    计算几何真的好暴力啊. #include<cmath> #include<cstdio> #include<cstring> #include<algorit ...

  6. 【BZOJ 1007】【HNOI 2008】水平可见直线 解析几何

    之前机房没网就做的这道题,用的解析几何判断交点横坐标 #include<cmath> #include<cstdio> #include<cstring> #inc ...

  7. [bzoj 1004][HNOI 2008]Cards(Burnside引理+DP)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1004 分析: 1.确定方向:肯定是组合数学问题,不是Polya就是Burnside,然后题目上 ...

  8. BZOJ 1010 玩具装箱toy(四边形不等式优化DP)(HNOI 2008)

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...

  9. HNOI 2008:水平可见直线

    Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为 可见的,否则Li为被覆盖的. 例如,对于直线: L1:y ...

随机推荐

  1. hibernate框架学习笔记1:搭建与测试

    hibernate框架属于dao层,类似dbutils的作用,是一款ORM(对象关系映射)操作 使用hibernate框架好处是:操作数据库不需要写SQL语句,使用面向对象的方式完成 这里使用ecli ...

  2. 通过cmd命令行连接mysql数据库

    找到 mysqld.exe所在的路径 使用cd切换到msyqld.exe路径下 输入mysql连接命令,格式如下 Mysql  -P 端口号  -h  mysql主机名\ip -u root (用户) ...

  3. scrapy 修改URL爬取起始位置

    import scrapy from Autopjt.items import myItem from scrapy.http import Request class AutospdSpider(s ...

  4. const volatile同时限定一个类型int a = 10

    const和volatile放在一起的意义在于: (1)本程序段中不能对a作修改,任何修改都是非法的,或者至少是粗心,编译器应该报错,防止这种粗心: (2)另一个程序段则完全有可能修改,因此编译器最好 ...

  5. JVM笔记7-内存分配与回收策略

    1.对象优先在Eden分配 大多数情况下,对象在新生代Eden区中分配.当Eden区中没有足够空间分配时,虚拟机将发起一次Minor GC.虚拟机提供了-XX:PrintGCDetails 这个收集器 ...

  6. linux系统命令学习系列-用户切换命令su,sudo

    先复习一下上节内容: 用户组添加groupadd 用户组修改groupmod 用户组删除groupdel 作业创建一个id为501的组group1,然后改成group2, 同时id变为502,最后删除 ...

  7. Python基础学习篇章三

    一. Python对象类型 1. 对象是Python最基本的概念,一个Python程序可以分解为模块.语句.表达式.和对象.它们的关系如下:(1)程序由模块构成 (2)模块包含语句 (3)语句包含表达 ...

  8. 20165230 2017-2018-2 《Java程序设计》第4周学习总结

    20165230 2017-2018-2 <Java程序设计>第4周学习总结 教材学习内容总结 子类与继承 通过class 子类名 extends 父类名定义子类.子类只能继承一个父类,关 ...

  9. C语言学习(一)

    C语言易学难精,如果在平时的编程中,加入一些小技巧,可以提供程序运行的效率,何乐而不为呢? 本小白初学C语言准备记录自己的学C之路,经常贴一些自己觉得优化的小程序代码,希望大神们不吝 赐教. 宏定义下 ...

  10. tomca配置文件自动还原问题的解决 server.xml content.xml 等

    当我们在处理中文乱码或是配置数据源时,我们要修改Tomcat下的server.xml和content.xml文件. 但是当我们修改完后重启Tomcat服务器时发现xml文件又被还原了,修改无效果. 为 ...