当N大于等于2,k大于等于3时,
易得:mH(N)被Nk-1给bound住。
VC维:最小断点值-1/H能shatter的最大k值。
这里的k指的是存在k个输入能被H给shatter,不是任意k个输入都能被H给shatter。
如:2维感知机能shatter平面上呈三角形排列的3个样本点,却shatter不了平面上呈直线排列的3个样本点,
因为当另外2个点标签值一致时,中间那个点无法取与它们相反的标签值。
若无断点,则该H下,VC维为无穷。
所以,存在断点------>有限VC维。
d维感知器算法下,VC维=d+1。
证明:
D,大小为d+1------>矩阵X,易得X是(d+1)*(d+1)的矩阵,X的秩小于等于d+1,
所以存在X,行向量之间线性无关,每一行向量可取任意标签值,
所以H能shatter这个X对应的d+1个样本点,即VC维>=d+1;
D,大小为d+2------>矩阵X,易得X是(d+2)*(d+1)的矩阵,X的秩小于d+2,
所以任意X,总有一行与其他行向量线性相关,该行的标签值收到限制,
所以H不能shatter这个X对应的d+2个样本点,即VC维<=d+1;
所以,VC维=d+1。
VC维,反映的是H的自由度,可粗略认为是自由参数的个数(不总是)。
VC维增大,Ein减小,模型复杂度增大;
VC维减小,Ein增大,模型复杂度减小。
给定差异容忍度epsilon,概率容忍度delta,VC维,求满足条件需要多少样本。
理论上,N约等于10000倍的VC维,
实际上,N取10倍的VC维就足够了。
可见,VC维是十分松弛的,
1.使用霍夫丁不等式,不管f、输入分布P;
2.使用成长函数,不管具体的D;
3.使用N的多项式,不管H(VC维相同);
4.使用联合bound,不管A。
之所以使用VC维是为了定性分析VC维里包含的信息,
而且它对所有模型都近似松弛。
 

机器学习基石:07 The VC Dimension的更多相关文章

  1. 机器学习基石笔记:07 The VC Dimension

    当N大于等于2,k大于等于3时, 易得:mH(N)被Nk-1给bound住. VC维:最小断点值-1/H能shatter的最大k值. 这里的k指的是存在k个输入能被H给shatter,不是任意k个输入 ...

  2. 07 The VC Dimension

    当N大于等于2,k大于等于3时, 易得:mH(N)被Nk-1给bound住. VC维:最小断点值-1/H能shatter的最大k值. 这里的k指的是存在k个输入能被H给shatter,不是任意k个输入 ...

  3. 机器学习基石7-The VC Dimension

    注: 文章中所有的图片均来自台湾大学林轩田<机器学习基石>课程. 笔记原作者:红色石头 微信公众号:AI有道 前几节课着重介绍了机器能够学习的条件并做了详细的推导和解释.机器能够学习必须满 ...

  4. 【The VC Dimension】林轩田机器学习基石

    首先回顾上节课末尾引出来的VC Bound概念,对于机器学习来说,VC dimension理论到底有啥用. 三点: 1. 如果有Break Point证明是一个好的假设集合 2. 如果N足够大,那么E ...

  5. 【机器学习基石笔记】七、vc Dimension

    vc demension定义: breakPoint - 1 N > vc dimension, 任意的N个,就不能任意划分 N <= vc dimension,存在N个,可以任意划分 只 ...

  6. Coursera台大机器学习课程笔记6 -- The VC Dimension

    本章的思路在于揭示VC Dimension的意义,简单来说就是假设的自由度,或者假设包含的feature vector的个数(一般情况下),同时进一步说明了Dvc和,Eout,Ein以及Model C ...

  7. 机器学习基石12-Nonlinear Transformation

    注: 文章中所有的图片均来自台湾大学林轩田<机器学习基石>课程. 笔记原作者:红色石头 微信公众号:AI有道 上一节课介绍了分类问题的三种线性模型,可以用来解决binary classif ...

  8. 机器学习基石8-Noise and Error

    注: 文章中所有的图片均来自台湾大学林轩田<机器学习基石>课程. 笔记原作者:红色石头 微信公众号:AI有道 上一节课,我们主要介绍了VC Dimension的概念.如果Hypothese ...

  9. 机器学习基石11-Linear Models for Classification

    注: 文章中所有的图片均来自台湾大学林轩田<机器学习基石>课程. 笔记原作者:红色石头 微信公众号:AI有道 上一节课,我们介绍了Logistic Regression问题,建立cross ...

随机推荐

  1. (译文)React----React应用程序流式服务端渲染

    好处 React16推出了流式服务端渲染,它允许你并行地分发HTML片段.这样可以让渲染 出的首字节有意义的内容给用户速度更快. (例子1,上面部分是一次性转换,下面是流渲染,两种方式) 而且相对re ...

  2. 《构建之法》教学笔记——Python中的效能分析与几个问题

    <构建之法:现代软件工程>中第2章对效能分析进行了介绍,基于的工具是VSTS.由于我教授的学生中只有部分同学选修了C#,若采用书中例子讲解,学生可能理解起来比较困难.不过所有这些学生都学习 ...

  3. 《团队-手机app便签-开发文档》

    项目托管平台地址:https://github.com/Vcandoit/Notepad.git 我主要负责文件存储部分,文字部分使用sqlite保存. 因为我们想实现备忘录记录照片.语音的功能,所以 ...

  4. 105&250-高级软件工程2017第3次作业

    小组成员 2017282110250 王婷婷 2017202110105 张芷祎 github地址 https://github.com/setezzy/Calculator_GUI PSP PSP2 ...

  5. 201621123054 《Java程序设计》第六周实验总结

    1. 本周学习总结 1.1 面向对象学习暂告一段落,请使用思维导图,以封装.继承.多态为核心概念画一张思维导图或相关笔记,对面向对象思想进行一个总结. 1.2 可选:使用常规方法总结其他上课内容. 2 ...

  6. EasyUI中Tabs添加远程数据的方法。

    tabs加载远程数据: $(function () { $("#btnquery").click(function () { if (!$("#tcontent" ...

  7. C# 使用 GDI+ 画图

    最近做一个微信公众号服务,有一些简单的图片处理功能.主要就是用户在页面操作,前端做一些立刻显示的效果,然后提交保存时后端真正修改原图. 我们的后端是 ASP.NET,也就是 C# 语言了,C# 本身处 ...

  8. 谈谈ASP.NET Core中的ResponseCaching

    前言 前面的博客谈的大多数都是针对数据的缓存,今天我们来换换口味.来谈谈在ASP.NET Core中的ResponseCaching,与ResponseCaching关联密切的也就是常说的HTTP缓存 ...

  9. Mego(08) - 高级建模

    对于模型建立Mego还提供了一些高级主题 数据库函数映射 我们可以将现有的CLR方法映射到指定数据库的标题函数上,如下所示 public class OrderManageEntities : DbC ...

  10. URL编码和Base64编码 (转)

    我们经常会遇到所谓的URL编码(也叫百分号编码)和Base64编码.      先说一下Bsae64编码.BASE64编码是一种常用的将二进制数据转换为64个可打印字符的编码,常用于在通常处理文本数据 ...