【BZOJ1084】最大子矩阵(动态规划)
【BZOJ1084】最大子矩阵(动态规划)
题面
题目描述
这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大。注意:选出的k个子矩阵不能相互重叠。
输入输出格式
输入格式:
第一行为n,m,k(1≤n≤100,1≤m≤2,1≤k≤10),接下来n行描述矩阵每行中的每个元素的分值(每个元素的分值的绝对值不超过32767)。
输出格式:
只有一行为k个子矩阵分值之和最大为多少。
输入输出样例
输入样例#1
3 2 2
1 -3
2 3
-2 3
输出样例#1
9
题解
还是我太菜
想了半天,发现连数据范围都没有看
\(m≤2\)
。。。
是我太菜,什么都看不见
既然\(m≤2\),那么分情况直接搞就行了
第一种 \(m=1\)
很显然吧。。
设\(f[i][j]\)表示当前搞到第\(i\)行,已经选了\(j\)个子矩阵的最大值
暴力枚举一下上一个开始的位置
然后前缀和转移即可
第二种 \(m=2\)
设\(f[i][j][k]\)表示当前第一列的搞到\(i\),第二列的搞到\(j\),一共选了\(k\)个子矩阵的最大值
首先上下两列分开搞,类似\(m=1\)的转移,
然后当\(i=j\)时,显然可以两列一起转移
所以也类似于\(m=1\)的转移,
求和的时候搞两列的就行了
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int n,m,g[200][5];
int K,f[101][101][15],s[5][200];
int ff[101][15];
int main()
{
n=read();m=read();K=read();
for(int i=1;i<=n;++i)
for(int j=1;j<=m;++j)
g[i][j]=read();
for(int j=1;j<=m;++j)
for(int i=1;i<=n;++i)
s[j][i]=s[j][i-1]+g[i][j];
if(m==1)
{
memset(ff,-63,sizeof(ff));
ff[0][0]=0;
for(int i=1;i<=n;++i)
{
ff[i][0]=0;
for(int k=1;k<=K;++k)
{
ff[i][k]=ff[i-1][k];//不选
for(int j=0;j<i;++j)
ff[i][k]=max(ff[i][k],ff[j][k-1]+s[1][i]-s[1][j]);
}
}
printf("%d\n",ff[n][K]);
}
else
{
memset(f,-63,sizeof(f));
for(int i=0;i<=n;++i)
for(int j=0;j<=n;++j)
f[i][j][0]=0;
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)
{
for(int k=1;k<=K;++k)
{
f[i][j][k]=max(f[i][j][k],f[i-1][j][k]);
f[i][j][k]=max(f[i][j][k],f[i][j-1][k]);
for(int l=0;l<i;++l)
f[i][j][k]=max(f[i][j][k],f[l][j][k-1]+s[1][i]-s[1][l]);
for(int l=0;l<j;++l)
f[i][j][k]=max(f[i][j][k],f[i][l][k-1]+s[2][j]-s[2][l]);
if(i==j)
for(int l=0;l<i;++l)
f[i][j][k]=max(f[i][j][k],f[l][l][k-1]+s[1][i]+s[2][i]-s[1][l]-s[2][l]);
}
}
printf("%d\n",f[n][n][K]);
}
return 0;
}
【BZOJ1084】最大子矩阵(动态规划)的更多相关文章
- BZOJ1084 [SCOI2005]最大子矩阵 动态规划
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1084 题意概括 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注 ...
- 九度OJ 1497 面积最大的全1子矩阵 -- 动态规划
题目地址:http://ac.jobdu.com/problem.php?pid=1497 题目描述: 在一个M * N的矩阵中,所有的元素只有0和1,从这个矩阵中找出一个面积最大的全1子矩阵,所谓最 ...
- BZOJ 1084 [SCOI2005]最大子矩阵 - 动态规划
传送门 题目大意: 从矩阵中取出k个互不重叠的子矩阵,求最大的和. 题目分析: 对于m=1,直接最大m子段和. 对于m=2: \(dp[i][j][k]\)表示扫描到第一列i和第2列j时选取了k个矩阵 ...
- luogu P2258 子矩阵 |动态规划
题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第22.44行和第22.44.55列交叉 ...
- [SCOI2005]最大子矩阵 (动态规划)
题目描述 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. 输入输出格式 输入格式: 第一行为n,m,k(1≤n≤100,1≤m≤2 ...
- [bzoj1084]最大子矩阵
用f[i][j][k]表示第一行前i个数,第二行前j个数选k个子矩形的答案,考虑转移:1.在第一行/第二行选择一个矩形2.当i=j时,可以选择一个两行的矩形注意要特判m=1的情况 1 #include ...
- [bzoj1084][SCOI2005]最大子矩阵_动态规划_伪·轮廓线dp
最大子矩阵 bzoj-1084 SCOI-2005 题目大意:给定一个n*m的矩阵,请你选出k个互不重叠的子矩阵使得它们的权值和最大. 注释:$1\le n \le 100$,$1\le m\le 2 ...
- 【动态规划】最大连续子序列和,最大子矩阵和,最大m子段和
1.最大字段和问题 求一个序列最大连续子序列之和. 例如序列[-1,-2,-3,4,5,-6]的最大子段和为4 + 5 = 9. ①枚举法 int MaxSum(int n,int *a){ int ...
- 【动态规划】最大子段和问题,最大子矩阵和问题,最大m子段和问题
http://blog.csdn.net/liufeng_king/article/details/8632430 1.最大子段和问题 问题定义:对于给定序列a1,a2,a3……an,寻找它 ...
随机推荐
- 阿里云学习之API网关
注:此处仅供api的创建做一个补充参考,API网关的优缺点及创建过程中的参数详情,请参考阿里云开放文档:https://helpcdn.aliyun.com/document_detail/29478 ...
- PHP7的新功能
[转自:http://www.yiibai.com/php7/ ] [PHP7标量类型声明] 在PHP7,一个新的功能,标量类型声明已被引入.标量类型声明有两种选择方式 - 强制方式- 强制性是默 ...
- 洛谷P2832 行路难 分析+题解代码【玄学最短路】
洛谷P2832 行路难 分析+题解代码[玄学最短路] 题目背景: 小X来到了山区,领略山林之乐.在他乐以忘忧之时,他突然发现,开学迫在眉睫 题目描述: 山区有n座山.山之间有m条羊肠小道,每条连接两座 ...
- 韩信点兵(hanxin)
相传韩信才智过人,从不直接清点自己军队的人数,只要让士兵先后以三人一排.五人一排.七人一排地变换队形,而他每次只掠一眼队伍的排尾就知道总人数了.输入包含多组数据,每组数据包含3个非负整数a,b,c,表 ...
- JAVA浮点数计算精度损失底层原理与解决方案
浮点数会有精度损失这个在上大学的时候就已经被告知,但是至今完全没有想明白其中的原由,老师讲的时候也是一笔带过的,自己也没有好好琢磨.终于在工作的时候碰到了,于是google了一番. 问题: 对两个do ...
- 支持ipV6和ipV4的客户端编程
ipv4和ipv6在socket初始化的时候是不一样的. ipv4 socket初始化: int CClient::InitSocket(CString strIP, short portNum) { ...
- uva437 DAG
直接套用DAG的思路就行. AC代码: #include<cstdio> #include<cstring> #include<algorithm> using n ...
- acdrem1083 人民城管爱人民 DP
思路:d(i, 0)表示从节点i到达大运村的最短路径,d(i, 1)表示从节点i到达大运村的次短路径. 1.最短路:当做DAG处理即可. 2.次短路:假设当前在u点处,下一个节点是v.v到终点的最短路 ...
- nyoj913 取石子(十) SG函数 + Nimm博弈
思路: 第一堆:SG = n % 3; 第二堆:无规律,打表即可,用hash比set快很多; 第三堆:SG = n; 第四堆:无规律 第五堆:SG = n % 2; 第六堆:SG = n % (i + ...
- [Cake] 1. CI中的Cake
在上一篇C#Make自动化构建-简介中,简单的介绍了下Cake的脚本如何编写以及通过Powershell在本地运行Cake脚本.本篇在此基础上,介绍下如何在CI环境中使用Cake. 1. Cake简介 ...