Elasticsearch 数据搜索
ES即简单又复杂,你可以快速的实现全文检索,又需要了解复杂的REST API。本篇就通过一些简单的搜索命令,帮助你理解ES的相关应用。虽然不能让你理解ES的原理设计,但是可以帮助你理解ES,探寻更多的特性。
搜索API
ES提供了两种搜索的方式:请求参数方式 和 请求体方式。
- 请求参数方式
curl 'localhost:9200/bank/_search?q=*&pretty'
其中bank是查询的索引名称,q后面跟着搜索的条件:q=*表示查询所有的内容
- 请求体方式(推荐这种方式)
curl -XPOST 'localhost:9200/bank/_search?pretty' -d ' { "query": { "match_all": {} } }'
这种方式会把查询的内容放入body中,会造成一定的开销,但是易于理解。在平时的练习中,推荐这种方式。
返回的内容:
{ "took" : 26, "timed_out" : false, "_shards" : { "total" : 5, "successful" : 5, "failed" : 0 }, "hits" : { "total" : 1000, "max_score" : 1.0, "hits" : [ { "_index" : "bank", "_type" : "account", "_id" : "1", "_score" : 1.0, "_source" : a }, { "_index" : "bank", "_type" : "account", "_id" : "6", "_score" : 1.0, "_source" : b }] } }
返回的内容大致可以如下讲解:
- took:是查询花费的时间,毫秒单位
- time_out:标识查询是否超时
- _shards:描述了查询分片的信息,查询了多少个分片、成功的分片数量、失败的分片数量等
- hits:搜索的结果,total是全部的满足的文档数目,hits是返回的实际数目(默认是10)
- _score是文档的分数信息,与排名相关度有关,参考各大搜索引擎的搜索结果,就容易理解。
由于ES是一次性返回所有的数据,因此理解返回的内容是很必要的。它不像传统的SQL是先返回数据的一个子集,再通过数据库端的游标不断的返回数据(由于对传统的数据库理解的不深,这里有错还望指正)。
查询语言DSL
ES支持一种JSON格式的查询,叫做DSL,domain specific language。这门语言刚开始比较难理解,因此通过几个简单的例子开始:
下面的命令,可以搜索全部的文档:
{ "query": { "match_all": {} } }
query定义了查询,match_all声明了查询的类型。还有其他的参数可以控制返回的结果:
curl -XPOST 'localhost:9200/bank/_search?pretty' -d ' { "query": { "match_all": {} }, "size": 1 }'
上面的命令返回了所有文档数据中的第一条文档。如果size不指定,那么默认返回10条。
下面的命令请求了第10-20的文档。
curl -XPOST 'localhost:9200/bank/_search?pretty' -d ' { "query": { "match_all": {} }, "from": 10, "size": 10 }'
下面的命令指定了文档返回的排序方式:
curl -XPOST 'localhost:9200/bank/_search?pretty' -d ' { "query": { "match_all": {} }, "sort": { "balance": { "order": "desc" } } }'
执行搜索
上面了解了基本的搜索语句,下面就开始深入一些常用的DSL了。
之前的返回数据都是返回文档的所有内容,这种对于网络的开销肯定是有影响的,下面的例子就指定了返回特定的字段:
curl -XPOST 'localhost:9200/bank/_search?pretty' -d ' { "query": { "match_all": {} }, "_source": ["account_number", "balance"] }'
再回到query,之前的查询都是查询所有的文档,并不能称之为搜索引擎。下面就通过match方式查询特定字段的特定内容,比如查询余额为20的账户信息:
curl -XPOST 'localhost:9200/bank/_search?pretty' -d ' { "query": { "match": { "account_number": 20 } } }'
查询地址为mill的信息:
curl -XPOST 'localhost:9200/bank/_search?pretty' -d ' { "query": { "match": { "address": "mill" } } }'
查询地址为mill或者lane的信息:
curl -XPOST 'localhost:9200/bank/_search?pretty' -d ' { "query": { "match": { "address": "mill lane" } } }'
如果我们想要返回同时包含mill和lane的,可以通过match_phrase查询:
curl -XPOST 'localhost:9200/bank/_search?pretty' -d ' { "query": { "match_phrase": { "address": "mill lane" } } }'
ES提供了bool查询,可以把很多小的查询组成一个更为复杂的查询,比如查询同时包含mill和lane的文档:
curl -XPOST 'localhost:9200/bank/_search?pretty' -d ' { "query": { "bool": { "must": [ { "match": { "address": "mill" } }, { "match": { "address": "lane" } } ] } } }'
修改bool参数,可以改为查询包含mill或者lane的文档:
curl -XPOST 'localhost:9200/bank/_search?pretty' -d ' { "query": { "bool": { "should": [ { "match": { "address": "mill" } }, { "match": { "address": "lane" } } ] } } }'
也可以改写为must_not,排除包含mill和lane的文档:
curl -XPOST 'localhost:9200/bank/_search?pretty' -d ' { "query": { "bool": { "must_not": [ { "match": { "address": "mill" } }, { "match": { "address": "lane" } } ] } } }'
bool查询可以同时使用must, should, must_not组成一个复杂的查询:
curl -XPOST 'localhost:9200/bank/_search?pretty' -d ' { "query": { "bool": { "must": [ { "match": { "age": "40" } } ], "must_not": [ { "match": { "state": "ID" } } ] } } }'
过滤查询
之前说过score字段指定了文档的分数,使用查询会计算文档的分数,最后通过分数确定哪些文档更相关,返回哪些文档。
有的时候我们可能对分数不感兴趣,就可以使用filter进行过滤,它不会去计算分值,因此效率也就更高一些。
filter过滤可以嵌套在bool查询内部使用,比如想要查询在2000-3000范围内的所有文档,可以执行下面的命令:
curl -XPOST 'localhost:9200/bank/_search?pretty' -d ' { "query": { "bool": { "must": { "match_all": {} }, "filter": { "range": { "balance": { "gte": 20000, "lte": 30000 } } } } } }'
ES除了上面介绍过的范围查询range、match_all、match、bool、filter还有很多其他的查询方式,这里就先不一一说明了。
聚合
聚合提供了用户进行分组和数理统计的能力,可以把聚合理解成SQL中的GROUP BY和分组函数。在ES中,你可以在一次搜索查询的时间内,即完成搜索操作也完成聚合操作,这样就降低了多次使用REST API造成的网络开销。
下面就是通过terms聚合的简单样例:
curl -XPOST 'localhost:9200/bank/_search?pretty' -d ' { "size": 0, "aggs": { "group_by_state": { "terms": { "field": "state" } } } }'
它类似于SQL中的下面的语句:
SELECT state, COUNT(*) FROM bank GROUP BY state ORDER BY COUNT(*) DESC
返回的数据:
"hits" : { "total" : 1000, "max_score" : 0.0, "hits" : [ ] }, "aggregations" : { "group_by_state" : { "buckets" : [ { "key" : "al", "doc_count" : 21 }, { "key" : "tx", "doc_count" : 17 }, { "key" : "id", "doc_count" : 15 }, { "key" : "ma", "doc_count" : 15 }, { "key" : "md", "doc_count" : 15 }, { "key" : "pa", "doc_count" : 15 }, { "key" : "dc", "doc_count" : 14 }, { "key" : "me", "doc_count" : 14 }, { "key" : "mo", "doc_count" : 14 }, { "key" : "nd", "doc_count" : 14 } ] } } }
由于size设置为0,它并没有返回文档的信息,只是返回了聚合的结果。
比如统计不同账户状态下的平均余额:
curl -XPOST 'localhost:9200/bank/_search?pretty' -d ' { "size": 0, "aggs": { "group_by_state": { "terms": { "field": "state" }, "aggs": { "average_balance": { "avg": { "field": "balance" } } } } } }'
聚合支持嵌套,举个例子,先按范围分组,在统计不同性别的账户余额:
curl -XPOST 'localhost:9200/bank/_search?pretty' -d ' { "size": 0, "aggs": { "group_by_age": { "range": { "field": "age", "ranges": [ { "from": 20, "to": 30 }, { "from": 30, "to": 40 }, { "from": 40, "to": 50 } ] }, "aggs": { "group_by_gender": { "terms": { "field": "gender" }, "aggs": { "average_balance": { "avg": { "field": "balance" } } } } } } } }'
聚合可以实现很多复杂的功能,而且ES也提供了很多复杂的聚合,这里作为引导篇。
本文转载自 linkedkeeper.com
Elasticsearch 数据搜索的更多相关文章
- Elasticsearch 数据搜索篇·【入门级干货】
ES即简单又复杂,你可以快速的实现全文检索,又需要了解复杂的REST API.本篇就通过一些简单的搜索命令,帮助你理解ES的相关应用.虽然不能让你理解ES的原理设计,但是可以帮助你理解ES,探寻更多的 ...
- Elasticsearch 数据搜索篇·【入门级干货】===转
ES即简单又复杂,你可以快速的实现全文检索,又需要了解复杂的REST API.本篇就通过一些简单的搜索命令,帮助你理解ES的相关应用.虽然不能让你理解ES的原理设计,但是可以帮助你理解ES,探寻更多的 ...
- Elasticsearch 数据搜索篇
curl 'localhost:9200/_cat/indices?v' health index pri rep docs.count docs.deleted store.size pri.sto ...
- [转] [Elasticsearch] 数据建模 - 处理关联关系(1)
[Elasticsearch] 数据建模 - 处理关联关系(1) 标签: 建模elasticsearch搜索搜索引擎 2015-08-16 23:55 6958人阅读 评论(0) 收藏 举报 分类: ...
- Elasticsearch 数据查询
数据准备: PUT /shop { "settings": { "number_of_shards": 3, "number_of_replicas& ...
- 服务追踪数据使用 RabbitMQ 进行采集 + 数据存储使用 Elasticsearch + 数据展示使用 Kibana
服务追踪数据使用 RabbitMQ 进行采集 + 数据存储使用 Elasticsearch + 数据展示使用 Kibana https://www.cnblogs.com/xishuai/p/elk- ...
- ElasticSearch入门-搜索(java api)
ElasticSearch入门-搜索(java api) package com.qlyd.searchhelper; import java.util.Map; import net.sf.json ...
- 大数据学习[16]--使用scroll实现Elasticsearch数据遍历和深度分页[转]
题目:使用scroll实现Elasticsearch数据遍历和深度分页 作者:星爷 出处: http://lxWei.github.io/posts/%E4%BD%BF%E7%94%A8scroll% ...
- 基于 MySQL Binlog 的 Elasticsearch 数据同步实践 原
一.背景 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品.订单等数据的多维度检索. 使用 Elasticsearch 存储业务数据可以 ...
随机推荐
- ios 初体验<真机调试>
1.很多小伙伴,初学ios后面,都想迫不及待的连接上真机,在真机上调试,本人今天花了许久时间,在网上查了许多资料,一直出现了个问题导致我没法真机调试, 问题一:Your session has exp ...
- nginx.conf配置文件的简单说明
#nginx 监听原理 先监听端口 --> 再配置域名 -->匹配到就访问local 否则 没有匹配到域名就默认访问第一个监听端口的local地址# vi nginx.conf user ...
- cat、tail、head、tee、grep、wc、sort文件操作和过滤
详见;http://blog.yemou.net/article/query/info/tytfjhfascvhzxcyt103 文件操作和过滤 绝大多数命令行工作是针对文件的.我们会在本节中讨论如何 ...
- javascript中this的指向
作为一个前端小白在开发中对于this的指向问题有时候总是会模糊,于是花时间研究了一番. 首先this是JS的关键字,this是js函数在运行是生成的一个内部对象,生成的这个this只能在函数内部使用. ...
- outlook 无法搜索邮件的解决方法
我的outlook版本是2007 SP3,英文版.一直有搜索不到邮件的问题,例如在搜索框输入发件人的名字,或者邮件中的词语,就是搜索不到邮件,即使那封邮件确实存在. 在网上搜索,Microsoft 的 ...
- Swiper+JS 上拉刷新
JS // 上拉刷新 var page = 2; var isAjax = true;//加载数据前状态 $( ...
- C语言程序设计课程设计自查表格
课程设计自查表格 序号 项目 完成与否(完成打勾) 1 格式是否符合标准(缩进是否规范) 2 是否模块化设计(使用函数分解系统功能) 3 函数名否易懂(不得使用f1(int a1,int a2)这样的 ...
- 201521123049 《JAVA程序设计》 第6周学习总结
1. 本周学习总结 1.1 面向对象学习暂告一段落,请使用思维导图,以封装.继承.多态为核心概念画一张思维导图,对面向对象思想进行一个总结. 注1:关键词与内容不求多,但概念之间的联系要清晰,内容覆盖 ...
- 201521123073《Java程序设计》第4周学习总结
一. 本周学习总结 二. 书面作业 1.注释的应用 2.面向对象设计(大作业1,非常重要) 2.1 将在网上商城购物或者在班级博客进行学习这一过程,描述成一个故事.(不得少于50字,参考QQ群中PPT ...
- 第2周作业-Java基本语法与类库(20170227-20170304)
本周学习总结 (1)这周学习认识和熟悉了java的一些类型和变量: (2)学习了java的运算符基本使用方法: (3)了解了如何建立远程仓库和本地仓库,和如何让java代码在临时储存,本地仓库和远程仓 ...