题目链接

Problem Description

As we all known, merge sort is an O(nlogn) comparison-based sorting algorithm. The merge sort achieves its good runtime by a divide-and-conquer strategy, namely, that of halving the list being sorted: the front and back halves of the list are recursively sorted separately, then the two results are merged into the answer list. An implementation is shown as follows:

The procedure Merge(L1,L2:in List_type;L:out List_type) that we have in mind for sorting two lists is described as follows. Initialize pointers to the first item in each list L1,L2, and then

repeat

compare the two items pointed at;

move the smaller into L;

move the pointer which originally points at the smaller one to the next number;

until one of L1,L2 exhausts;

drain the remainder of the unexhausted list into L;

Now let us come to the situation when there are k pointers, here k≥2. Let L be a list of n elements. Divide L into k disjoint contiguous sublists L1,L2,…,Lk of nearly equal length. Some Li’s (namely, n reminder k of them, so possibly none) will have length  , let these have the low indices: L1,L2,…,Ln%k Other Li’s will have length , and high indices are assigned: Ln%k+1,…,Lk-1,Lk. We intend to recursively sort the Li’s and merge the k results into an answer list.

We use Linear-Search-Merge here to merge k sorted lists. We find the smallest of k items (one from each of the k sorted source lists), at a cost of k-1 comparisons. Move the smallest into the answer list and advances its corresponding pointer (the next smallest element) in the source list from which it came. Again there are k items, from among which the smallest is to be selected. (When i (1 ≤ i < k) lists are empty, k-way merging sort becomes to (k-i)-way merging sort, and the draining process will start when the total order of all the elements have been found)

Given a list containing n elements, your task is to find out the maximum number of comparisons in k-way merging sort.

 Input

The first line of the input contains an integer T (T <= 100), indicating the number of cases. Each case begins with a line containing two integer n (1 ≤ n ≤ 10100) and k (2 ≤ k ≤ 20), the number of elements in the list, and it is k-way merging sort.

 Output

For each test case, print a line containing the test case number (beginning with 1) and the maximum number of comparisons in k-way merging sort.

 Sample Input

4
2 2
3 2
100 7
1000 10

 Sample Output

Case 1: 1
Case 2: 3
Case 3: 1085
Case 4: 22005
 
 
题意:对于归并排序,本来是2-路分治,现在要求k-路分治,求n个元素下k-路分治归并排序所需要的最大比较次数?
 
思路:对于n个元素k-路分治,将元素1~n分为k段,前s=n%k段每段有n/k+1个元素,后k-s段每段有n/k个元素,那么对这k段进行归并时和2-路一样,选出这k段中的最小值放入合并后的数组,每次从k段中选出一个最小值需要比较k-1次,当每一段均剩下一个元素时,共选出了n-k个最小值,所以比较了(k-1)*(n-k)次,对于剩下的k个元素则需要比较(k-1)+(k-2)+……+1=(k-1)*k/2 次,所以共需要(k-1)*(n-k)+(k-1)*k/2次,然后递归进一步分治,注意使用记忆化搜索。
 
注意:本题数据很大所以不能用数组存值,而用的map映射的。
 
代码如下:
import java.math.BigInteger;
import java.util.HashMap;
import java.util.Map;
import java.util.Scanner; public class Main{
static Map<BigInteger,BigInteger>dp = new HashMap<BigInteger,BigInteger>();
static BigInteger n, ans;
static int k;
static BigInteger dfs(BigInteger len, BigInteger x){
if(dp.containsKey(len)) return x.multiply(dp.get(len));
if(len.compareTo(BigInteger.valueOf(k))<=0){
return x.multiply(len.subtract(BigInteger.ONE)).multiply(len).divide(BigInteger.valueOf(2));
}
BigInteger tmp = (BigInteger.valueOf(k).subtract(BigInteger.ONE)).multiply((len.subtract(BigInteger.valueOf(k))));
tmp = tmp.add(BigInteger.valueOf(k).multiply(BigInteger.valueOf(k).subtract(BigInteger.ONE)).divide(BigInteger.valueOf(2)));
BigInteger kk = len.mod(BigInteger.valueOf(k));
if(kk!=BigInteger.ZERO){
tmp=tmp.add(dfs(len.divide(BigInteger.valueOf(k)).add(BigInteger.ONE),kk));
}
tmp = tmp.add(dfs(len.divide(BigInteger.valueOf(k)),BigInteger.valueOf(k).subtract(kk)));
dp.put(len, tmp);
return tmp.multiply(x);
}
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int T = in.nextInt();
for(int cas=1; cas<=T; cas++){
dp.clear();
n = in.nextBigInteger();
k = in.nextInt();
ans=dfs(n, BigInteger.ONE);
System.out.println("Case "+cas+": "+ans);
}
}
}

下面这个是我先用c++写的版本,用来验证算法,上面的java是用这c++代码改写的(其实一样)。

#include <iostream>
#include <algorithm>
#include <string.h>
#include <string>
#include <stdio.h>
#include <stdlib.h>
#include <map>
using namespace std;
typedef long long LL;
LL n,k;
map<LL,LL>mp; LL dfs(LL len,LL x)
{
if(mp.count(len)) return x*mp[len];
if(len<=k) return x*(len-)*len/;
LL tmp=(k-)*(len-k);
tmp+=k*(k-)/;
tmp+=dfs(len/k+(len%k!=),(len%k));
tmp+=dfs(len/k,(k-len%k));
mp[len]=tmp;
return tmp*x;
} int main()
{
while(scanf("%lld%lld",&n,&k)!=EOF)
{
mp.clear();
LL ans=dfs(n,);
cout<<"final ans = "<<ans<<endl;
}
return ;
}

FZU 1919 -- K-way Merging sort(记忆化搜索)的更多相关文章

  1. ACM International Collegiate Programming Contest, Tishreen Collegiate Programming Contest (2017)- K. Poor Ramzi -dp+记忆化搜索

    ACM International Collegiate Programming Contest, Tishreen Collegiate Programming Contest (2017)- K. ...

  2. loj 1021(状压dp+记忆化搜索)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=25887 题目大意:给定的一个某进制下的排列,问它的全排列有多少个能 ...

  3. FZU 2092 bfs+记忆化搜索

    晚上团队训练赛的题 和普通bfs不同的是 这是同时操纵人与影子两个单位进行的bfs 由于可能发生人和影子同时接触水晶 所以不可以分开操作 当时使用node记录人和影子的位置 然后进行两重for循环来分 ...

  4. FZU 2092 收集水晶 bfs+记忆化搜索 or 暴力

    题目链接:收集水晶 一眼看过去,觉得是普通的bfs,初始位置有两个.仔细想了想...好像如果这样的话..........[不知道怎么说...T_T] dp[12][12][12][12][210] 中 ...

  5. FZU 2092 收集水晶(记忆化搜索)

    Problem 2092 收集水晶 Accept: 101 Submit: 439 Time Limit: 5000 mSec Memory Limit : 32768 KB Problem Desc ...

  6. E. Santa Claus and Tangerines 二分答案 + 记忆化搜索

    http://codeforces.com/contest/752/problem/E 首先有一个东西就是,如果我要检测5,那么14我们认为它能产生2个5. 14 = 7 + 7.但是按照平均分的话, ...

  7. cdoj Dividing Numbers 乱搞记忆化搜索

    //真tm是乱搞 但是(乱搞的)思想很重要 解:大概就是记忆化搜索,但是原数据范围太大,不可能记下所有的情况的答案,于是我们就在记下小范围内的答案,当dfs落入这个记忆范围后,就不进一步搜索,直接返回 ...

  8. UVA 103 Stacking Boxes (dp + DAG上的最长路径 + 记忆化搜索)

     Stacking Boxes  Background Some concepts in Mathematics and Computer Science are simple in one or t ...

  9. 2017广东工业大学程序设计竞赛决赛 题解&源码(A,数学解方程,B,贪心博弈,C,递归,D,水,E,贪心,面试题,F,贪心,枚举,LCA,G,dp,记忆化搜索,H,思维题)

    心得: 这比赛真的是不要不要的,pending了一下午,也不知道对错,直接做过去就是了,也没有管太多! Problem A: 两只老虎 Description 来,我们先来放松下,听听儿歌,一起“唱” ...

随机推荐

  1. selenium系列------元素定位套路

    selenium定位分为上三门,平三门,下三门, id,name,linktext上三门, class ,css,js平三门, xpath,tag名,复数定位(定位一组然后选index元素).

  2. [C]成员运算符"."和间接成员运算符"->"浅析

    成员运算符: . 成员运算符一般和结构或者联合名一起使用,指定结构或者联合中的某个成员. 举个栗子: 如果Ronz是一个结构的名称,linux是这个结构模板指定的一个成员名. struct{ //匿名 ...

  3. 使用vs2015编写c语言程序

    使用vs2015编写c语言程序 转载Yanky--博客园 http://www.cnblogs.com/yankyblogs/p/7058036.html   编写c语言程序的软件有很多,当年刚开始学 ...

  4. JS学习五(js中的事件)

    [JS中的事件分类] 1.鼠标事件 click/bdlclick/onmouseover/onmouseout 2. HTML事件 onload/onscroll/onsubmit/onchange/ ...

  5. 团队作业4——第一次项目冲刺(Alpha版本)

    Deadline: 2017-4-30 22:00PM,以博客发表日期为准 评分基准: 按时交 - 有分,检查的项目包括后文的两个个方面 七天的敏捷冲刺 日志的集合贴 晚交 - 0分 迟交一周以上 - ...

  6. 201521123062《Java程序设计》第8周学习总结

    1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结集合与泛型相关内容. 1.2 选做:收集你认为有用的代码片段 for (int i = 0; i < list.size(); ...

  7. 201521123068《Java程序设计》第5周学习总结

    1. 本周学习总结 1.1 尝试使用思维导图总结有关多态与接口的知识点. 查看脑图->多态与接口 1.2 可选:使用常规方法总结其他上课内容. 2. 书面作业 1.代码阅读:Child压缩包内源 ...

  8. 201521123106《java程序设计》第二周学习总结

    1. 本周学习总结 学习了java的基础语法.在java中使用浮点型会不精确,改用double行就好.学习了string的类型,string的对象是不可变的,创建之后不能再修改,在string的拼接中 ...

  9. JAVA课程设计-----加减法测试博客

    1.团队成员介绍(一个人做的) 谢季努:网络1513 201521123079 2.项目git地址 3.项目git提交截图 4.项目运行截图 输入答案后点击确认就会出现本次的得分 如果觉得成绩不理想点 ...

  10. 练习使用markdown

    我的随笔 写随笔的原因 1 完全是为了练习使用markdown编辑器 2 我是个爱学习的宝宝 3 学习能力问题? 随笔内容 弄懂markdown语法 随便谢谢心情 个人心情 冷漠 不想说话 神经 个人 ...