Counting Cliques

Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 184    Accepted Submission(s): 56

Problem Description
A clique is a complete graph, in which there is an edge between every pair of the vertices. Given a graph with N vertices and M edges, your task is to count the number of cliques with a specific size S in the graph. 
 
Input
The first line is the number of test cases. For each test case, the first line contains 3 integers N,M and S (N ≤ 100,M ≤ 1000,2 ≤ S ≤ 10), each of the following M lines contains 2 integers u and v (1 ≤ u < v ≤ N), which means there is an edge between vertices u and v. It is guaranteed that the maximum degree of the vertices is no larger than 20.
 
 
Output
For each test case, output the number of cliques with size S in the graph.
 
 
Sample Input

3
4 3 2
1 2
2 3
3 4
5 9 3
1 3
1 4
1 5
2 3
2 4
2 5
3 4
3 5
4 5
6 15 4
1 2
1 3
1 4
1 5
1 6
2 3
2 4
2 5
2 6
3 4
3 5
3 6
4 5
4 6
5 6

思路:构造一个团,如果一个点与这个团的所有点都有边,则将其加入团中,统计含s个点的团的个数。关于优化,可以建单向边来减少搜索量。

代码:

 #include<bits/stdc++.h>
//#include<regex>
#define db double
#include<vector>
#define ll long long
#define vec vector<ll>
#define Mt vector<vec>
#define ci(x) scanf("%d",&x)
#define cd(x) scanf("%lf",&x)
#define cl(x) scanf("%lld",&x)
#define pi(x) printf("%d\n",x)
#define pd(x) printf("%f\n",x)
#define pl(x) printf("%lld\n",x)
#define MP make_pair
#define PB push_back
#define inf 0x3f3f3f3f3f3f3f3f
#define fr(i,a,b) for(int i=a;i<=b;i++)
const int N=1e3+;
const int mod=1e9+;
const int MOD=mod-;
const db eps=1e-;
using namespace std;
bool d[][];
int n,m,s,t;
int ans;
vector<int> g[N];
void dfs(int u,int *a,int cnt)
{
if(cnt==s){
ans++;
return;
}
bool ok;
for(int i=;i<g[u].size();i++)
{
ok=;
int v=g[u][i];
for(int j=;j<=cnt;j++){
if(!d[a[j]][v]) {ok=;break;}
}
if(ok)
{
a[++cnt]=v;//加点
dfs(v,a,cnt);//继续搜
a[cnt--]=;
}
}
}
int main(){
//freopen("data.in","r",stdin);
//freopen("data.out","w",stdout);
ci(t);
while(t--)
{
ci(n),ci(m),ci(s);
ans=;
for(int i=;i<=n;i++) g[i].clear();
memset(d,,sizeof(d));
for(int i=;i<m;i++){
int u,v;
ci(u),ci(v);
if(u>v) swap(u,v);
g[u].push_back(v);
d[u][v]=d[v][u]=;
}
for(int i=;i<=n;i++){
if(g[i].size()>=s-){
int a[];
a[]=i;//构建团
int cnt=;
dfs(i,a,cnt);
}
}
pi(ans);
}
return ;
}

hdu 5952 连通子图的更多相关文章

  1. HDU - 5952 Counting Cliques

    Counting Cliques HDU - 5952 OJ-ID: hdu-5952 author:Caution_X date of submission:20191110 tags:dfs,gr ...

  2. 最大半连通子图 bzoj 1093

    最大半连通子图 (1.5s 128MB) semi [问题描述] 一个有向图G = (V,E)称为半连通的(Semi-Connected),如果满足:∀ u, v ∈V,满足u->v 或 v - ...

  3. BZOJ1093 [ZJOI2007]最大半连通子图

    Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u ...

  4. BZOJ 1093 [ZJOI2007] 最大半连通子图(强联通缩点+DP)

    题目大意 题目是图片形式的,就简要说下题意算了 一个有向图 G=(V, E) 称为半连通的(Semi-Connected),如果满足图中任意两点 u v,存在一条从 u 到 v 的路径或者从 v 到 ...

  5. BZOJ1093 最大半连通子图

    Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意 两点u,v,存在一条u到v的有向路径或者从v到 ...

  6. BZOJ 1093 [ZJOI2007]最大半连通子图

    1093: [ZJOI2007]最大半连通子图 Time Limit: 30 Sec  Memory Limit: 162 MBSubmit: 1986  Solved: 802[Submit][St ...

  7. bzoj 1093 [ZJOI2007]最大半连通子图(scc+DP)

    1093: [ZJOI2007]最大半连通子图 Time Limit: 30 Sec  Memory Limit: 162 MBSubmit: 2286  Solved: 897[Submit][St ...

  8. BZOJ 1093: [ZJOI2007]最大半连通子图( tarjan + dp )

    WA了好多次... 先tarjan缩点, 然后题意就是求DAG上的一条最长链. dp(u) = max{dp(v)} + totu, edge(u,v)存在. totu是scc(u)的结点数. 其实就 ...

  9. [BZOJ]1093 最大半连通子图(ZJOI2007)

    挺有意思的一道图论. Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:∀u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v ...

随机推荐

  1. IO库

    IO类 C++语言不直接处理出入输出,而是通过一族定义在标准库中的类型来处理IO.这些类型支持从设备读取数据.向设备写入数据的IO操作,设备可以是文件 .控制台窗口 等.还有一些类型允许内存IO ,即 ...

  2. python requests 官方文档

    链接:http://docs.python-requests.org/zh_CN/latest/user/quickstart.html

  3. mysql转ElasticSearch的案例分析

    前言 最近工作中在进行一些技术优化,为了减少对数据库的压力,对于只读操作,在程序与db之间加了一层-ElasticSearch.具体实现是db与es通过bin-log进行同步,保证数据一致性,代码调用 ...

  4. JavaScript面向对象(二)——成员属性、静态属性、原型属性与JS原型链

      前  言 JRedu 上一篇博客中,我们介绍了JS中的面向对象,并详细的解释了this的指向问题.本篇博客,我们继续来学习JS的面向对象.来深入理解一下JavaScript OOP中的成员属性/方 ...

  5. C# 委托、匿名方法、lambda简介

    在.NET中,委托,匿名方法和Lambda表达式很容易发生混淆.我想下面的代码能证实这点.下面哪一个First会被编译?哪一个会返回我们需要的结果?即Customer.ID=5.答案是6个First不 ...

  6. 第二次项目冲刺(Beta阶段)--第二天

    一.站立式会议照片 二.项目燃尽图 三.项目进展 功能模块的代码编写完成,界面布局规划已经定型,不会有大的修改,接下去就是主要解决存在的bug以及各种测试. 队员  ID 贡献比 王若凡 201421 ...

  7. 201521123037 《Java程序设计》第7周学习总结

    1. 本周学习总结 以你喜欢的方式(思维导图或其他)归纳总结集合相关内容. 2. 书面作业 1. ArrayList代码分析 1.1 解释ArrayList的contains源代码 查看ArrayLi ...

  8. 201521123050 《Java程序设计》第7周学习总结

    1. 本周学习总结 2. 书面作业 1.ArrayList代码分析 1.1 解释ArrayList的contains源代码 代码: public boolean contains(Object o) ...

  9. 201521123008《Java程序设计》第六周实验总结

    1.本周学习总结 2.书面作业 1.clone方法 1.1 Object对象中的clone方法是被protected修饰,在自定义的类中覆盖clone方法时需要注意什么? 因为被protected修饰 ...

  10. 201521123095 《Java程序设计》第2周学习总结

    1. 本周学习总结 学会了使用码云管理代码,使用eclipse关联jdk源代码: 还学习了Java语言中各种数据类型以及运算符. 2. 书面作业 1.使用Eclipse关联jdk源代码,并查看Stri ...