• 如果你在使用 Pandas(Python Data Analysis Library) 的话,下面介绍的对你一定会有帮助的。
首先我们先介绍一些简单的概念
  • DataFrame:行列数据,类似 Excel 的 sheet,或关系型数据库的表
  • series:单列数据
  • axis:0:行,1:列
  • shape:DataFrame的行列数,(行数,列数)

1. 加载 CSV

Read_csv 方法有很多参数,有效的利用这些参数可以减轻数据预处理的工作。谁都不愿意做数据清洗,那么我们就在加载数据的时候做一些简单的数据处理
  • 直接加载
    • 无参数加载

      

    • 选择特定列加载

      

    • 时间转换加载

      

  • 分批加载
    有时我们可能需要加载的 csv 太大,可能会导致内存爆掉,这时候,我们就需要分批加载数据进行分析、处理
    

2. 浏览 DataFrame 数据

  • df.head(n):浏览数据的前 n 行,默认 5 行
  • df.tail(n):浏览数据的末尾 n 行,默认 5 行
  • df.sample(n):随机浏览 n 行数据,默认 5 行
  • df.shape:tuple 类型的数据行列数,(行数,列数)
  • df.describe():计算评估数据的趋势
  • df.info():内存和数据类型

3. 在 DataFrame 中增加列

在 DataFrame 中添加新列的操作很简单,下面介绍几种方式
  • 简单方式
    直接增加新列并赋值

    df['new_column'] = 1

  • 计算方式
    df['temp_diff'] = df['atemp'] - df['temp']
  • 条件方式
    我们仅仅根据风速,简单判断一下人体舒适度,体感比较舒服的温度是 0.3 米/秒
    

  • 循环方式
    我们将 season 转换为具体季节的名称
     

4. 选择指定单元格

类似于 Excel 单元格的选择,Pandas 提供了这样的功能,操作很简单,但是我本人理解起来确实没有操作看上去那么简单。Pandas 提供了三个方法做类似的操作,loc,iloc,ix,ix 官方已经不建议使用,所以我们下面介绍 loc 和 iloc
  • loc 根据标签选取loc
    df.loc[行索引开始位置:行索引结束位置,[列名数组]]
  • iloc 根据索引选取
    df.iloc[行索引开始位置:行索引结束位置,列索开始位置:列索引结束位置]
  • 选取行数据
  • df.loc[[行索引数组]],df.iloc[[行索引数组]]

    

注意:
  • 索引开始位置:闭区间
  • 索引结束位置:开区间
  • loc 和 iloc 选取整列数据的时候,看上去与 df[列名数组] 的方式一致,但是其实前者返回的仍然是 DataFrame,后者返回的是 Series

    

[数据分析工具] Pandas 功能介绍(一)的更多相关文章

  1. [数据分析工具] Pandas 功能介绍(二)

    条件过滤 我们需要看第一季度的数据是怎样的,就需要使用条件过滤 体感的舒适适湿度是40-70,我们试着过滤出体感舒适湿度的数据 最后整合上面两种条件,在一季度体感湿度比较舒适的数据 列排序 数据按照某 ...

  2. pt-query-digest工具的功能介绍了:

    Ok,可以查看 pt-query-digest工具的功能介绍了: [root@472322 percona-toolkit-2.2.5]# pt-query-digest --help pt-quer ...

  3. 数据分析工具Pandas

        参考学习资料:http://pandas.pydata.org 1.什么是Pandas? Pandas的名称来自于面板数据(panel data)和Python数据分析(data analys ...

  4. 数据分析工具pandas简介

    什么是Pandas? Pandas的名称来自于面板数据(panel data)和Python数据分析(data analysis). Pandas是一个强大的分析结构化数据的工具集,基于NumPy构建 ...

  5. python数据分析工具 | pandas

    pandas是python下强大的数据分析和探索工具,是的python在处理数据时非常快速.简单.它是构建在numpy之上的,包含丰富的数据处理函数,支持时间序列分析功能,支持灵活处理缺失数据. pa ...

  6. python数据分析工具——Pandas、StatsModels、Scikit-Learn

    Pandas Pandas是 Python下最强大的数据分析和探索工具.它包含高级的数据结构和精巧的工具,使得在 Python中处理数据非常快速和简单. Pandas构建在 Numpy之上,它使得以 ...

  7. 浏览器开发者工具----F12 功能介绍

    笔者技巧: 看了些其它回答,有些是用来扒图片的,有些是写爬虫的(这个不要看Elements,因为浏览器会对一些不符合规范的标签做补全或者其它处理,最好是Ctrl+U). 图片的话就不要看Network ...

  8. 用python做数据分析4|pandas库介绍之DataFrame基本操作

    原文地址 怎样删除list中空字符? 最简单的方法:new_list = [ x for x in li if x != '' ] 今天是5.1号. 这一部分主要学习pandas中基于前面两种数据结构 ...

  9. 机器学习(4):数据分析的工具-pandas的使用

    前面几节说一些沉闷的概念,你若看了估计已经心生厌倦,我也是.所以,找到了一个理由来说一个有兴趣的话题,就是数据分析.是什么理由呢?就是,机器学习的处理过程中,数据分析是经常出现的操作.就算机器对大量样 ...

随机推荐

  1. ArcGIS API for JavaScript 4.2学习笔记[29] 热点(密度)分析——以报警频率为例【使用Geoprocessor类】

    这个就颇有插值分析的样子了.也可以说是密度分析.做出来就是一个热力地图的样子. 比如,人口密度,降雨分布等.这都可以由这个例子做出来类似的. 由于上一篇已经介绍过Geoprocessor类和Param ...

  2. bzoj 4653: [Noi2016]区间

    Description 在数轴上有 n个闭区间 [l1,r1],[l2,r2],...,[ln,rn].现在要从中选出 m 个区间,使得这 m个区间共同包含至少一个位置.换句话说,就是使得存在一个 x ...

  3. rtmp指令解释--转

    指令 Core rtmp 语法:rtmp { ... } 上下文:根 描述:保存所有 RTMP 配置的块. server 语法:server { ... } 上下文:rtmp 描述:声明一个 RTMP ...

  4. Java <clinit> & <init>

    在编译生成class文件时,会自动产生两个方法,一个是类的初始化方法<clinit>, 另一个是实例的初始化方法<init>.     <clinit>:在jvm第 ...

  5. 【bird-java】bird-java概述

    bird-java是以dubbo为基础的分布式服务框架,专注于业务开发,提炼后台应用中的经典业务场景,大幅减少开发编码量. 技术选型 基础框架:spring 服务调度:dubbo web层:sprin ...

  6. linux mysql添加、删除用户、用户权限及mysql最大字段数量

    1.  登录: mysql -u username -p 显示全部的数据库: show databases; 使用某一个数据库: use databasename; 显示一个数据库的全部表: show ...

  7. Android动画(二)-属性动画

    我们在上一篇博客中,讨论了视图动画与帧动画.那么这节课则要讨论更复杂,更强大的Property animation(属性动画). 视图动画使用简单,但是功能也简单.(只有那四种功能).并且也不改变Vi ...

  8. A session had already been started – ignoring session_start() 怎么办?

    php警告提示A session had already been started – ignoring session_start() 解决方案 访问log日志发现有个这样的警告 主要是在TP框架中 ...

  9. PHP连接LDAP进行登录验证

    基于安全性考虑,准备把PHP做的自动化平台加入ldap登录验证,具体做法如下: 了解背景: LDAP 的全称是"轻量级目录访问协议(Lightweight Directory Access ...

  10. 数据结构-二叉树(应用篇)-之二叉搜索树 C和C++的实现

    一.概念 二叉搜索树(Binary Sort Tree/Binary Search Tree...),是二叉树的一种特殊扩展.也是一种动态查找表. 在二叉搜索树中,左子树上所有节点的均小于根节点,右子 ...