http://acm.hdu.edu.cn/showproblem.php?pid=2680

Choose the best route

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 9602    Accepted Submission(s): 3111

Problem Description
One day , Kiki wants to visit one of her friends. As she is liable to carsickness , she wants to arrive at her friend’s home as soon as possible . Now give you a map of the city’s traffic route, and the stations which are near Kiki’s home so that she can take. You may suppose Kiki can change the bus at any station. Please find out the least time Kiki needs to spend. To make it easy, if the city have n bus stations ,the stations will been expressed as an integer 1,2,3…n.
 
Input
There are several test cases. 
Each case begins with three integers n, m and s,(n<1000,m<20000,1=<s<=n) n stands for the number of bus stations in this city and m stands for the number of directed ways between bus stations .(Maybe there are several ways between two bus stations .) s stands for the bus station that near Kiki’s friend’s home.
Then follow m lines ,each line contains three integers p , q , t (0<t<=1000). means from station p to station q there is a way and it will costs t minutes .
Then a line with an integer w(0<w<n), means the number of stations Kiki can take at the beginning. Then follows w integers stands for these stations.
 
Output
The output contains one line for each data set : the least time Kiki needs to spend ,if it’s impossible to find such a route ,just output “-1”.
 
Sample Input
5 8 5
1 2 2
1 5 3
1 3 4
2 4 7
2 5 6
2 3 5
3 5 1
4 5 1
2
2 3
4 3 4
1 2 3
1 3 4
2 3 2
1
1
 
Sample Output
1
-1
 

题解:最短路 注意有重边,这里介绍一种用链表存 的时候可以不用考虑重边,方法就是将所有的边都标记为未访问,然后将其他边的值标记成INF,将开始那条边的值标记成0 ,然后加入n边,每次更新的时候就不用考虑重边了。

这个题因为数据量特别的大,dijk的算法本身是O (n^2)的,查询的时候调用n次dijk所以总共是O(n^3),所以最后会超时,可以逆向思维,因为终点是已知的所以从终点开始dijk一次后找到所有的已知起点中距离最小的点就可以了。

注意这个题中是有向边。

下面是代码:

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define N 2000
#define M 400000
#define INF 0x1fffffff
struct Edge{
int to ;
int v;
int next;
}edge[M];
int head[N];
int Ecnt;
void init()
{
Ecnt = ;
memset(head,-,sizeof(head));
}
void add(int from , int to ,int v)
{
edge[Ecnt].to = to;
edge[Ecnt].v = v;
edge[Ecnt].next = head[from];
head[from] = Ecnt++;
}
int dist[N];
bool p[N];
void dijk(int s, int n)
{
int i , j , k ;
for(i = ;i <= n ;i++)
{
p[i] = false;
dist[i] = INF;
}
//p[s] = true;
dist[s] = ; for( i = ; i < n ; i++)
{
int Min = INF ;
int k = ;
for( j = ; j <= n ; j++)
{
if(!p[j]&&dist[j]<Min)
{
Min = dist[j];
k = j;
}
}
if(Min == INF ) return ;
p[k] = true;
for(j = head[k]; j != - ; j = edge[j].next)
{
Edge e = edge[j];
if(!p[e.to]&&dist[e.to]>dist[k]+e.v)
dist[e.to] = dist[k]+e.v;
}
}
}
int main()
{
int n , m , s ;
while(~scanf("%d%d%d",&n,&m,&s))
{
init();
for(int i = ;i < m ; i++)
{
int p , q , t ;
scanf("%d%d%d",&p,&q,&t);
add(q,p,t);//逆向扫描,所以逆向加边
}
dijk(s,n);
int ss;
scanf("%d",&ss);
int ans = INF;
for(int i = ;i < ss; i++)
{
int w ;
scanf("%d",&w);
ans = min(ans,dist[w]);
}
if(ans==INF) printf("-1\n");
else printf("%d\n",ans);
}
return ;
}

Choose the best route(最短路)dijk的更多相关文章

  1. HDU2680 Choose the best route 最短路 分类: ACM 2015-03-18 23:30 37人阅读 评论(0) 收藏

    Choose the best route Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

  2. hdu-2680 Choose the best route(最短路)

    题目链接: Choose the best route Time Limit: 2000/1000 MS (Java/Others)     Memory Limit: 32768/32768 K ( ...

  3. hdu2680 Choose the best route 最短路(多源转单源)

    此题中起点有1000个,边有20000条.用链式前向星建图,再枚举起点用SPFA的话,超时了.(按理说,两千万的复杂度应该没超吧.不过一般说计算机计算速度 1~10 千万次/秒.也许拿最烂的计算机来卡 ...

  4. hdu 2680 Choose the best route

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=2680 Choose the best route Description One day , Kiki ...

  5. HDU2680 Choose the best route 2017-04-12 18:47 28人阅读 评论(0) 收藏

    Choose the best route Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Othe ...

  6. hdu 2680 Choose the best route (dijkstra算法 最短路问题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2680 Choose the best route Time Limit: 2000/1000 MS ( ...

  7. 最短路问题-- Dijkstra Choose the best route

    Choose the best route Problem Description One day , Kiki wants to visit one of her friends. As she i ...

  8. BZOJ 1266: [AHOI2006]上学路线route(最短路+最小割)

    第一问最短路.第二问,先把最短路的图建出来(边(u,v)满足d[s->u]+d[v->t]+d(u,v)==最短路径长度,就在图中,可以从源点和汇点分别跑一次最短路得到每个点到源点和汇点的 ...

  9. 最短路<dijk>

    题意: 有n个城市,有m条路,给出每条路的出发和结束的城市及长度,求从第一个城市到最后一个城市的最短路.按格式输出. power oj 2443 题解: 标准dijk算法. #include<c ...

随机推荐

  1. Mybatis-Oralce批量插入方法

    mybatis-Oralce 中批量插入方法一:<insert id="insertBatchSelective" parameterType="java.util ...

  2. CSS 去掉inline-block间隙的几种方法

    最近做移动端页面时,经常会用到inline-block元素来布局,但无可避免都会遇到一个问题,就是inline-block元素之间的间隙.这些间隙会导致一些布局上的问题,需要把间隙去掉.对于inlin ...

  3. canvas(七) 文字编写

    /** * Created by xianrongbin on 2017/3/11. */ var dom = document.getElementById('clock'), ctx = dom. ...

  4. bug运输[辽宁2014年省队互测一]

    奇奇怪怪的题目,不知道他要我们干什么. 我们观察一波局势,发现答案最大不过5.因为如果答案是6或以上的话,我们就至少要2^(5*5)个5*5的方格. 仔细计算一波时间复杂度,再信仰一波,坚信暴力压正解 ...

  5. Linux入门篇(四)——Vim的使用与Bash

    这一系列的Linux入门都是本人在<鸟哥的Linux私房菜>的基础上总结的基本内容,主要是记录下自己的学习过程,也方便大家简要的了解 Linux Distribution是Ubuntu而不 ...

  6. SpringMVC @SessionAttributes注解

    @SessionAttributes 注解只能作用到类上 @SessionAttributes(value={"user"},types={String.class}) @Sess ...

  7. FFmpeg AVPacket

    AVPacket注解 AVPacket 是一个结构体,存储压缩数据.可作为编码器的输出,解码器的输入. 对于 Video 一般包含一个压缩帧,对于 Audio 可能包含多个压缩帧. 编码器允许输出空 ...

  8. python并开发编程之协程

    一 引出协成 并发的本质是:切换+保存状态 CPU在运行行一个任务时,会在两种情况下切走去执行其他任务,一是该任务发生了阻塞,二是运行该任务的时间过长 yeild可以保存状态,yeild状态保存与操作 ...

  9. Oracle (11g) 修改默认的用户名及密码

    Oracle11g的云盘连接 Q1:安装完成Oracle数据后如何登录? A1:打开cmd窗口,输入sqlplus / as sysdba 后回车,以超级管理员身份登录,成功后如图所示(可以看到是or ...

  10. python爬虫下载文件

    python爬虫下载文件 下载东西和访问网页差不多,这里以下载我以前做的一个安卓小游戏为例 地址为:http://hjwachhy.site/game/only_v1.1.1.apk 首先下载到内存 ...