阅读目录

新进阶的程序员可能对async、await用得比较多,却对之前的异步了解甚少。本人就是此类,因此打算回顾学习下异步的进化史。

本文主要是回顾async异步模式之前的异步,下篇文章再来重点分析async异步模式。

APM

APM 异步编程模型,Asynchronous Programming Model

早在C#1的时候就有了APM。虽然不是很熟悉,但是多少还是见过的。就是那些类是BeginXXX和EndXXX的方法,且BeginXXX返回值是IAsyncResult接口。

在正式写APM示例之前我们先给出一段同步代码:

//1、同步方法
private void button1_Click(object sender, EventArgs e)
{
Debug.WriteLine("【Debug】线程ID:" + Thread.CurrentThread.ManagedThreadId); var request = WebRequest.Create("https://github.com/");//为了更好的演示效果,我们使用网速比较慢的外网
request.GetResponse();//发送请求 Debug.WriteLine("【Debug】线程ID:" + Thread.CurrentThread.ManagedThreadId);
label1.Text = "执行完毕!";
}

【说明】为了更好的演示异步效果,这里我们使用winform程序来做示例。(因为winform始终都需要UI线程渲染界面,如果被UI线程占用则会出现“假死”状态)

【效果图】

看图得知:

  • 我们在执行方法的时候页面出现了“假死”,拖不动了。
  • 我们看到打印结果,方法调用前和调用后线程ID都是9(也就是同一个线程)

下面我们再来演示对应的异步方法:(BeginGetResponse、EndGetResponse所谓的APM异步模型)

private void button2_Click(object sender, EventArgs e)
{
//1、APM 异步编程模型,Asynchronous Programming Model
//C#1[基于IAsyncResult接口实现BeginXXX和EndXXX的方法]
Debug.WriteLine("【Debug】主线程ID:" + Thread.CurrentThread.ManagedThreadId); var request = WebRequest.Create("https://github.com/");
request.BeginGetResponse(new AsyncCallback(t =>//执行完成后的回调
{
var response = request.EndGetResponse(t);
var stream = response.GetResponseStream();//获取返回数据流 using (StreamReader reader = new StreamReader(stream))
{
StringBuilder sb = new StringBuilder();
while (!reader.EndOfStream)
{
var content = reader.ReadLine();
sb.Append(content);
}
Debug.WriteLine("【Debug】" + sb.ToString().Trim().Substring(0, 100) + "...");//只取返回内容的前100个字符
Debug.WriteLine("【Debug】异步线程ID:" + Thread.CurrentThread.ManagedThreadId);
label1.Invoke((Action)(() => { label1.Text = "执行完毕!"; }));//这里跨线程访问UI需要做处理
}
}), null); Debug.WriteLine("【Debug】主线程ID:" + Thread.CurrentThread.ManagedThreadId);
}

【效果图】

看图得知:

  • 启用异步方法并没有是UI界面卡死
  • 异步方法启动了另外一个ID为12的线程

上面代码执行顺序:

前面我们说过,APM的BebinXXX必须返回IAsyncResult接口。那么接下来我们分析IAsyncResult接口:

首先我们看:

确实返回的是IAsyncResult接口。那IAsyncResult到底长的什么样子?:

并没有想象中的那么复杂嘛。我们是否可以尝试这实现这个接口,然后显示自己的异步方法呢?

首先定一个类MyWebRequest,然后继承IAsyncResult:(下面是基本的伪代码实现)

public class MyWebRequest : IAsyncResult
{
public object AsyncState
{
get { throw new NotImplementedException(); }
} public WaitHandle AsyncWaitHandle
{
get { throw new NotImplementedException(); }
} public bool CompletedSynchronously
{
get { throw new NotImplementedException(); }
} public bool IsCompleted
{
get { throw new NotImplementedException(); }
}
}

这样肯定是不能用的,起码也得有个存回调函数的属性吧,下面我们稍微改造下:

然后我们可以自定义APM异步模型了:(成对的Begin、End)

public IAsyncResult MyBeginXX(AsyncCallback callback)
{
var asyncResult = new MyWebRequest(callback, null);
var request = WebRequest.Create("https://github.com/");
new Thread(() => //重新启用一个线程
{
using (StreamReader sr = new StreamReader(request.GetResponse().GetResponseStream()))
{
var str = sr.ReadToEnd();
asyncResult.SetComplete(str);//设置异步结果
} }).Start();
return asyncResult;//返回一个IAsyncResult
} public string MyEndXX(IAsyncResult asyncResult)
{
MyWebRequest result = asyncResult as MyWebRequest;
return result.Result;
}

调用如下:

 private void button4_Click(object sender, EventArgs e)
{
Debug.WriteLine("【Debug】主线程ID:" + Thread.CurrentThread.ManagedThreadId);
MyBeginXX(new AsyncCallback(t =>
{
var result = MyEndXX(t);
Debug.WriteLine("【Debug】" + result.Trim().Substring(0, 100) + "...");
Debug.WriteLine("【Debug】异步线程ID:" + Thread.CurrentThread.ManagedThreadId);
}));
Debug.WriteLine("【Debug】主线程ID:" + Thread.CurrentThread.ManagedThreadId);
}

效果图:

我们看到自己实现的效果基本上和系统提供的差不多。

  • 启用异步方法并没有是UI界面卡死
  • 异步方法启动了另外一个ID为11的线程

【总结】

个人觉得APM异步模式就是启用另外一个线程执行耗时任务,然后通过回调函数执行后续操作。

APM还可以通过其他方式获取值,如:

while (!asyncResult.IsCompleted)//循环,直到异步执行完成 (轮询方式)
{
Thread.Sleep(100);
}
var stream2 = request.EndGetResponse(asyncResult).GetResponseStream();

asyncResult.AsyncWaitHandle.WaitOne();//阻止线程,直到异步完成 (阻塞等待)
var stream2 = request.EndGetResponse(asyncResult).GetResponseStream();

补充:如果是普通方法,我们也可以通过委托异步:(BeginInvoke、EndInvoke)

 public void MyAction()
{
var func = new Func<string, string>(t =>
{
Thread.Sleep(2000);
return "name:" + t + DateTime.Now.ToString();
}); var asyncResult = func.BeginInvoke("张三", t =>
{
string str = func.EndInvoke(t);
Debug.WriteLine(str);
}, null);
}

EAP

EAP 基于事件的异步模式,Event-based Asynchronous Pattern

此模式在C#2的时候随之而来。

先来看个EAP的例子:

 private void button3_Click(object sender, EventArgs e)
{
Debug.WriteLine("【Debug】主线程ID:" + Thread.CurrentThread.ManagedThreadId); BackgroundWorker worker = new BackgroundWorker();
worker.DoWork += new DoWorkEventHandler((s1, s2) =>
{
Thread.Sleep(2000);
Debug.WriteLine("【Debug】异步线程ID:" + Thread.CurrentThread.ManagedThreadId);
});//注册事件来实现异步
worker.RunWorkerAsync(this);
Debug.WriteLine("【Debug】主线程ID:" + Thread.CurrentThread.ManagedThreadId);
}

【效果图】(同样不会阻塞UI界面)

【特征】

  • 通过事件的方式注册回调函数
  • 通过 XXXAsync方法来执行异步调用

例子很简单,但是和APM模式相比,是不是没有那么清晰透明。为什么可以这样实现?事件的注册是在干嘛?为什么执行RunWorkerAsync会触发注册的函数?

感觉自己又想多了...

我们试着反编译看看源码:

只想说,这么玩,有意思吗?

TAP

TAP 基于任务的异步模式,Task-based Asynchronous Pattern

到目前为止,我们觉得上面的APM、EAP异步模式好用吗?好像没有发现什么问题。再仔细想想...如果我们有多个异步方法需要按先后顺序执行,并且需要(在主进程)得到所有返回值。

首先定义三个委托:

public Func<string, string> func1()
{
return new Func<string, string>(t =>
{
Thread.Sleep(2000);
return "name:" + t;
});
}
public Func<string, string> func2()
{
return new Func<string, string>(t =>
{
Thread.Sleep(2000);
return "age:" + t;
});
}
public Func<string, string> func3()
{
return new Func<string, string>(t =>
{
Thread.Sleep(2000);
return "sex:" + t;
});
}

然后按照一定顺序执行:

public void MyAction()
{
string str1 = string.Empty, str2 = string.Empty, str3 = string.Empty;
IAsyncResult asyncResult1 = null, asyncResult2 = null, asyncResult3 = null;
asyncResult1 = func1().BeginInvoke("张三", t =>
{
str1 = func1().EndInvoke(t);
Debug.WriteLine("【Debug】异步线程ID:" + Thread.CurrentThread.ManagedThreadId);
asyncResult2 = func2().BeginInvoke("26", a =>
{
str2 = func2().EndInvoke(a);
Debug.WriteLine("【Debug】异步线程ID:" + Thread.CurrentThread.ManagedThreadId);
asyncResult3 = func3().BeginInvoke("男", s =>
{
str3 = func3().EndInvoke(s);
Debug.WriteLine("【Debug】异步线程ID:" + Thread.CurrentThread.ManagedThreadId);
}, null);
}, null);
}, null); asyncResult1.AsyncWaitHandle.WaitOne();
asyncResult2.AsyncWaitHandle.WaitOne();
asyncResult3.AsyncWaitHandle.WaitOne();
Debug.WriteLine(str1 + str2 + str3);

除了难看、难读一点好像也没什么 。不过真的是这样吗?

asyncResult2是null?
由此可见在完成第一个异步操作之前没有对asyncResult2进行赋值,asyncResult2执行异步等待的时候报异常。那么如此我们就无法控制三个异步函数,按照一定顺序执行完成后再拿到返回值。(理论上还是有其他办法的,只是会然代码更加复杂)

是的,现在该我们的TAP登场了。

只需要调用Task类的静态方法Run,即可轻轻松松使用异步。

获取返回值:

var task1 = Task<string>.Run(() =>
{
Thread.Sleep(1500);
Console.WriteLine("【Debug】task1 线程ID:" + Thread.CurrentThread.ManagedThreadId);
return "张三";
});
//其他逻辑
task1.Wait();
var value = task1.Result;//获取返回值
Console.WriteLine("【Debug】主 线程ID:" + Thread.CurrentThread.ManagedThreadId);

现在我们处理上面多个异步按序执行:

Console.WriteLine("【Debug】主 线程ID:" + Thread.CurrentThread.ManagedThreadId);
string str1 = string.Empty, str2 = string.Empty, str3 = string.Empty;
var task1 = Task.Run(() =>
{
Thread.Sleep(500);
str1 = "姓名:张三,";
Console.WriteLine("【Debug】task1 线程ID:" + Thread.CurrentThread.ManagedThreadId);
}).ContinueWith(t =>
{
Thread.Sleep(500);
str2 = "年龄:25,";
Console.WriteLine("【Debug】task2 线程ID:" + Thread.CurrentThread.ManagedThreadId);
}).ContinueWith(t =>
{
Thread.Sleep(500);
str3 = "爱好:妹子";
Console.WriteLine("【Debug】task3 线程ID:" + Thread.CurrentThread.ManagedThreadId);
}); Thread.Sleep(2500);//其他逻辑代码 task1.Wait(); Debug.WriteLine(str1 + str2 + str3);
Console.WriteLine("【Debug】主 线程ID:" + Thread.CurrentThread.ManagedThreadId);

[效果图]

我们看到,结果都得到了,且是异步按序执行的。且代码的逻辑思路非常清晰。如果你感受还不是很大,那么你现象如果是100个异步方法需要异步按序执行呢?用APM的异步回调,那至少也得异步回调嵌套100次。那代码的复杂度可想而知。

延伸思考

  • WaitOne完成等待的原理

  • 异步为什么会提升性能

  • 线程的使用数量和CPU的使用率有必然的联系吗

问题1:WaitOne完成等待的原理

在此之前,我们先来简单的了解下多线程信号控制AutoResetEvent类。

var _asyncWaitHandle = new AutoResetEvent(false);
_asyncWaitHandle.WaitOne();

此代码会在 WaitOne 的地方会一直等待下去。除非有另外一个线程执行 AutoResetEvent 的set方法。

var _asyncWaitHandle = new AutoResetEvent(false);
_asyncWaitHandle.Set();
_asyncWaitHandle.WaitOne();

如此,到了 WaitOne 就可以直接执行下去。没有有任何等待。

现在我们对APM 异步编程模型中的 WaitOne 等待是不是知道了点什么呢。我们回头来实现之前自定义异步方法的异步等待。

public class MyWebRequest : IAsyncResult
{
//异步回调函数(委托)
private AsyncCallback _asyncCallback;
private AutoResetEvent _asyncWaitHandle;
public MyWebRequest(AsyncCallback asyncCallback, object state)
{
_asyncCallback = asyncCallback;
_asyncWaitHandle = new AutoResetEvent(false);
}
//设置结果
public void SetComplete(string result)
{
Result = result;
IsCompleted = true;
_asyncWaitHandle.Set();
if (_asyncCallback != null)
{
_asyncCallback(this);
}
}
//异步请求返回值
public string Result { get; set; }
//获取用户定义的对象,它限定或包含关于异步操作的信息。
public object AsyncState
{
get { throw new NotImplementedException(); }
}
// 获取用于等待异步操作完成的 System.Threading.WaitHandle。
public WaitHandle AsyncWaitHandle
{
//get { throw new NotImplementedException(); } get { return _asyncWaitHandle; }
}
//获取一个值,该值指示异步操作是否同步完成。
public bool CompletedSynchronously
{
get { throw new NotImplementedException(); }
}
//获取一个值,该值指示异步操作是否已完成。
public bool IsCompleted
{
get;
private set;
}
}

红色代码就是新增的异步等待。

【执行步骤】

问题2:异步为什么会提升性能

比如同步代码:

Thread.Sleep(10000);//假设这是个访问数据库的方法
Thread.Sleep(10000);//假设这是个访问FQ网站的方法

这个代码需要20秒。

如果是异步:

var task = Task.Run(() =>
{
Thread.Sleep(10000);//假设这是个访问数据库的方法
});
Thread.Sleep(10000);//假设这是个访问FQ网站的方法
task.Wait();

如此就只要10秒了。这样就节约了10秒。

如果是:

var task = Task.Run(() =>
{
Thread.Sleep(10000);//假设这是个访问数据库的方法
});
task.Wait();

异步执行中间没有耗时的代码那么这样的异步将是没有意思的。

或者:

var task = Task.Run(() =>
{
Thread.Sleep(10000);//假设这是个访问数据库的方法
});
task.Wait();
Thread.Sleep(10000);//假设这是个访问FQ网站的方法

把耗时任务放在异步等待后,那这样的代码也是不会有性能提升的。

还有一种情况:

如果是单核CPU进行高密集运算操作,那么异步也是没有意义的。(因为运算是非常耗CPU,而网络请求等待不耗CPU)

问题3:线程的使用数量和CPU的使用率有必然的联系吗

答案是否。

还是拿单核做假设。

情况1:

long num = 0;
while (true)
{
num += new Random().Next(-100,100);
//Thread.Sleep(100);
}

单核下,我们只启动一个线程,就可以让你CPU爆满。

启动八次,八进程CPU基本爆满。

情况2:

一千多个线程,而CPU的使用率竟然是0。由此,我们得到了之前的结论,线程的使用数量和CPU的使用率没有必然的联系。

虽然如此,但是也不能毫无节制的开启线程。因为:

  • 开启一个新的线程的过程是比较耗资源的。(可是使用线程池,来降低开启新线程所消耗的资源)
  • 多线程的切换也是需要时间的。
  • 每个线程占用了一定的内存保存线程上下文信息。

demo:http://pan.baidu.com/s/1slOxgnF

[转]C#异步的世界【上】的更多相关文章

  1. 【转】C#异步的世界【上】

    [转]C#异步的世界[上] 新进阶的程序员可能对async.await用得比较多,却对之前的异步了解甚少.本人就是此类,因此打算回顾学习下异步的进化史. 本文主要是回顾async异步模式之前的异步,下 ...

  2. C#异步的世界【下】

    接上篇:<C#异步的世界[上]> 上篇主要分析了async\await之前的一些异步模式,今天说异步的主要是指C#5的async\await异步.在此为了方便的表述,我们称async\aw ...

  3. 【转】C#异步的世界【下】

    [转]C#异步的世界[下] 接上篇:<C#异步的世界[上]> 上篇主要分析了async\await之前的一些异步模式,今天说异步的主要是指C#5的async\await异步.在此为了方便的 ...

  4. C#异步的世界【下】(转)

    接上篇:<C#异步的世界[上]> 上篇主要分析了async\await之前的一些异步模式,今天说异步的主要是指C#5的async\await异步.在此为了方便的表述,我们称async\aw ...

  5. 为什么我会认为SAP是世界上最好用最牛逼的ERP系统,没有之一?

    为什么我认为SAP是世界上最好用最牛逼的ERP系统,没有之一?玩过QAD.Tiptop.用友等产品,深深觉得SAP是贵的有道理! 一套好的ERP系统,不仅能够最大程度承接适配企业的管理和业务流程,在技 ...

  6. Nivo Slider - 世界上最棒的 jQuery 图片轮播插件

    Nivo Slider 号称世界上最棒的图片轮播插件,有独立的 jQuery 插件和 WordPress 插件两个版本.目前下载量已经突破 1,800,000 次!jQuery 独立版本的插件主要有如 ...

  7. 世界上不存在什么RedBSD,SuseBSD或者ArchBSD,Turb...

    世界上不存在什么RedBSD,SuseBSD或者ArchBSD,TurboBSD之类的东西.

  8. hdu---(4515)小Q系列故事——世界上最遥远的距离(模拟题)

    小Q系列故事——世界上最遥远的距离 Time Limit: 500/200 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)T ...

  9. Git是目前世界上最先进的分布式版本控制系统

    一:Git是什么? Git是目前世界上最先进的分布式版本控制系统. 二:SVN与Git的最主要的区别? SVN是集中式版本控制系统,版本库是集中放在中央服务器的,而干活的时候,用的都是自己的电脑,所以 ...

  10. 世界上最方便的SharePoint移动客户端--Rshare

    Rshare我试用了一段时间,同时也测试了其他家产品,使用后的感觉是Rshare无愧于世界上最方面的SharePoint移动客户端. 1.界面设计很方便,设计中充分考虑到移动客户的使用习惯及喜好,设计 ...

随机推荐

  1. 2016.3.17__CSS3动画__第十一天

    CSS3动画 假设您认为这篇文章还不错,能够去H5专题介绍中查看很多其它相关文章. 通过 CSS3,我们能够创建动画,这能够在很多网页中取代动绘图片.Flash 动画以及 JavaScript. 今日 ...

  2. 【剑指offer】扑克牌的顺子

    个大王,2个小王(一副牌原本是54张^_^)...他随机从中抽出了5张牌,想測測自己的手气,看看能不能抽到顺子,假设抽到的话,他决定去买体育彩票,嘿嘿! ."红心A,黑桃3,小王,大王,方片 ...

  3. JAVA入门[13]-Spring装配Bean

    一.概要 Sping装配bean主要有三种装配机制: 在XML中进行显式配置. 在Java中进行显式配置. 隐式的bean发现机制和自动装配. 原则: 建议尽可能地使用自动配置的机制,显式配置越少越好 ...

  4. 解决 ASP.NET Core Hangfire 未授权(401 Unauthorized)

    相关文章:ASP.NET Core 使用 Hangfire 定时任务 ASP.NET Core Hangfire 在正式环境发布之后,如果访问 http://10.1.2.31:5000/hangfi ...

  5. java集合框架(Collections Framework)

    */ .hljs { display: block; overflow-x: auto; padding: 0.5em; color: #333; background: #f8f8f8; } .hl ...

  6. SpringMVC框架(二)注解 (转)

    原文地址:http://www.cnblogs.com/yjq520/p/6734422.html 1.@Controller @Controller 用于标记在一个类上,使用它标记的类就是一个Spr ...

  7. Android Activity生命周期详细解析

    概况 讲Android Activity那怎么都绕不过这张图,这篇文章也是围绕这幅图详细分析. 背景 假设这是你的APP,以此为背景,下面的每个part请结合上图理解. #Case 1 当按下app启 ...

  8. JSP和JavaBean总结

    JSP JSP全名为Java Server Pages,即java服务器页面,其根本是一个简化的Servlet设计.它是在传统的网页HTML文件中插入Java代码,从而形成JSP文件. JSP注释分为 ...

  9. 童话故事 --- CPU的贴身侍卫ITCM和ICache

    "叮铃铃- 叮铃铃-" "谁呀?"黛丝博士打开了家门,"哇,高飞,你怎么来了?" 高飞狗:"好久不见,想来看看你,还买了你最喜欢吃 ...

  10. Linux第五节随笔 /file / vim / suid /sgid sbit

    三期第四讲1.查询文件类型与文件位置命令 file 作用:查看文件类型(linux下的文件类型不以后缀名区分) 语法举例: [root@web01 ~]# file passwd passwd: AS ...