0、操作系统

centos:6.4
hadoop:2.5.0-cdh5.3.6

1、为什么要编译 spark 源码?

学习spark的第一步 就应该是编译源码,后期修改和调试,扩展集成的功能模块

2、Spark 源码编译的三种形式?

a.maven 编译
# export MAVEN_OPTS="-Xmx2g -XX:ReservedCodeCacheSize=512m"
# ${SPARK_HOME_SRC}/./build/mvn -Pyarn -Phadoop-2.4 -Dhadoop.version=2.4.0 -DskipTests clean package

b.SBT 编译
#${SPARK_HOME_SRC}/./build/sbt -Pyarn -Phadoop-2.3 package

c.打包编译
# ${SPARK_HOME_SRC}/./dev/make-distribution.sh --tgz -Psparkr -Dhadoop.version=2.5.0-cdh5.3.6 -Phadoop-2.4 -Phive -Phive-thriftserver -Pyarn

3、版本要求:

Maven 3.3.9

JDK 1.8+(1.8.0_12)
Scala 2.11.8
Note: Starting version 2.0, Spark is built with Scala 2.11 by default.
R(3.2.0)
wget http://mirrors.tuna.tsinghua.edu.cn/CRAN/src/base/R-3/R-3.2.0.tar.gz

4、编译步骤概览:

0. root 用户编译 + 网络通畅
1. jdk 环境搭建
2. maven 环境搭建
3. R(3.2.0)语言环境
4. 正式编译

5、jdk、maven 环境都是采用压缩包安装形式

操作形式:上传压缩包、解压、配置环境变量、更新source 资源文件
NOTE:
检查Maven 是否和现有Java 环境对应起来
给Maven 配置阿里云镜像:
修改 ${MAVEN_HOME}/conf/settings.xml
添加镜像:
<mirror>
<id>alimaven</id>
<name>aliyun maven</name>
<url>http://maven.aliyun.com/nexus/content/groups/public/</url>
<mirrorOf>central</mirrorOf>
</mirror>

R 语言 搭建
下载源码
# cd ${R_HOME}
# yum install gcc-gfortran readline-devel libXt-devel

error:
# yum install gcc-gfortran #否则报”configure: error: No F77 compiler found”错误

# yum install gcc gcc-c++ #否则报”configure: error: C++ preprocessor “/lib/cpp” fails sanity check”错误

# yum install readline-devel #否则报”–with-readline=yes (default) and headers/libs are not available”错误

# yum install libXt-devel #否则报”configure: error: –with-x=yes (default) and X11 headers/libs are not available”错误

# ./configure --enable-R-shlib

#make && make install
# vi ~/.bashrc (配置环境变量)
export R_HOME=/opt/modules/R-3.2.0
export PATH=$R_HOME/bin:$PATH、

6、正式编译

上传源码压缩包并解压
# cd ${SPARK_HOME_SRC}
# ${SPARK_HOME_SRC}/./dev/make-distribution.sh --tgz -Psparkr -Phadoop-2.4 -Dhadoop.version=2.5.0-cdh5.3.6 -Phive -Phive-thriftserver -Pyarn
a. 添加 sparkr

b. 添加hadoop版本 -Dhadoop.version=2.5.0-cdh5.3.6

c. scala 压缩包解压到${SPARK_HOME_SRC}/build/

d. 修改为对应的版本(dev/make-distribution.sh)
初始
VERSION=$("$MVN" help:evaluate -Dexpression=project.version $@ 2>/dev/null | grep -v "INFO" | tail -n 1)
SCALA_VERSION=$("$MVN" help:evaluate -Dexpression=scala.binary.version $@ 2>/dev/null\
| grep -v "INFO"\
| tail -n 1)
SPARK_HADOOP_VERSION=$("$MVN" help:evaluate -Dexpression=hadoop.version $@ 2>/dev/null\
| grep -v "INFO"\
| tail -n 1)
SPARK_HIVE=$("$MVN" help:evaluate -Dexpression=project.activeProfiles -pl sql/hive $@ 2>/dev/null\
| grep -v "INFO"\
| fgrep --count "<id>hive</id>";\
# Reset exit status to 0, otherwise the script stops here if the last grep finds nothing\
# because we use "set -o pipefail"
echo -n)
替换为下面对应的参数值
VERSION=2.10
SCALA_VERSION=2.11
SPARK_HADOOP_VERSION=2.5.0-cdh5.3.6
SPARK_HIVE=1

e.spark pom.xml 添加 cdh reponsitory
<repository>
<id>cloudera</id>
<url>https://repository.cloudera.com/artifactory/cloudera-repos/</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>

如果不添加会出现如下错误信息:
Failed to execute goal on project spark-launcher_2.11: Could not resolve dependencies for project org.apache.spark:spark-launcher_2.11:jar:2.1.0: Could not find artifact org.apache.hadoop:hadoop-client:jar:2.5.0-cdh5.3.6

[ERROR] After correcting the problems, you can resume the build with the command
[ERROR] mvn <goals> -rf :spark-launcher_2.11
-rf :spark-launcher_2.11

# ${SPARK_HOME_SRC}/./dev/make-distribution.sh --tgz -Psparkr -Phadoop-2.4 -Dhadoop.version=2.5.0-cdh5.3.6 -Phive -Phive-thriftserver -Pyarn -rf :spark-launcher_2.11

下面是没有使用R模块的
# ${SPARK_HOME_SRC}/./dev/make-distribution.sh --tgz -Phadoop-2.4 -Dhadoop.version=2.5.0-cdh5.3.6 -Phive -Phive-thriftserver -Pyarn
===============================================================================

最终打包编译 生成的包目录对应为${SPARK_HOME_SRC}/spark-2.1.0-bin-2.5.0-cdh5.3.6.tgz
SPARK_VERSION-bin-HADOOP-VERSION.tgz

NOTE:
将编译好的spark 源码打包保存一份,后面 spark sql 及 spark streaming 后续学习会使用到相关的 jar 包.

=====================================================================================

真正使用R 运行在 spark 上,前面编译完成以后你需要初始化 R
# cd {SPARK_HOME_SRC}/R/
# ./install-dev.sh
参考文章:https://github.com/apache/spark/tree/master/R

spark2的编译的更多相关文章

  1. Spark2.0编译

    Spark2.0编译 1 前言 Spark2.0正式版于今天正式发布,本文基于CDH5.0.2的Spark编译. 2 编译步骤 #2.1 下载源码 wget https://github.com/ap ...

  2. 新闻实时分析系统 Spark2.X环境准备、编译部署及运行

    1.Spark概述 Spark 是一个用来实现快速而通用的集群计算的平台. 在速度方面, Spark 扩展了广泛使用的 MapReduce 计算模型,而且高效地支持更多计算模式,包括交互式查询和流处理 ...

  3. 新闻网大数据实时分析可视化系统项目——14、Spark2.X环境准备、编译部署及运行

    1.Spark概述 Spark 是一个用来实现快速而通用的集群计算的平台. 在速度方面, Spark 扩展了广泛使用的 MapReduce 计算模型,而且高效地支持更多计算模式,包括交互式查询和流处理 ...

  4. 附录A 编译安装Hadoop

    A.1  编译Hadoop A.1.1  搭建环境 第一步安装并设置maven 1.  下载maven安装包 建议安装3.0以上版本(由于Spark2.0编译要求Maven3.3.9及以上版本),本次 ...

  5. Spark编译

    Spark的运行版本使用mvn编译,已经集成在源码中.如果机器有外网或者配置了http代理,可以直接调用编译命令来进行编译. windows&Linux命令如下: ./build/mvn \ ...

  6. 自编译Apache Spark2.3.3支持CDH5.16.1

    1 下载源代码文件 https://archive.apache.org/dist/spark/spark-2.3.3/ 2 解压后导入编辑器,修改依赖的Hadoop版本,下面截图是修改后的,要看自己 ...

  7. mac os x 编译spark-2.1.0 for hadoop-2.7.3

    mac os x maven编译spark-2.1.0  for hadoop-2.7.3 1.官方文档中要求安装Maven 3.3.9+ 和Java 8 ; 2.执行         export ...

  8. Spark2.1.0编译

    1.下载spark源码包 http://spark.apache.org/downloads.html 2.安装Scala与maven,解压spark源码包 安装Scala: tar zxf scal ...

  9. Spark2.0.0源码编译

    Hive默认使用MapReduce作为执行引擎,即Hive on mr,Hive还可以使用Tez和Spark作为其执行引擎,分别为Hive on Tez和Hive on Spark.由于MapRedu ...

随机推荐

  1. OpenWRT(RT5350) 路由客户模式(Routed Client) ,设置防火墙开放UDP指定端口

    /* *功     能: 本文主要功能是设置OpenWRT(RT5350) 系统实现路由客户模式,无线连接上级路由, * 无线释放AP客户端,实现伪装的中继(子网段与上级路由网段不同),同时更改防火墙 ...

  2. SQL2005清空删除日志

    代码如下: Backup Log DNName with no_log  '这里的DNName是你要收缩的数据库名,自己注意修改下面的数据库名,我就不再注释了.godump transaction D ...

  3. hibernate的session详解

  4. Quart.Net分布式任务管理平台(续)

           感谢@Taking园友得建议,我这边确实多做了一步上传,导致后面还需处理同步上传到其他服务器来支持分布式得操作.所有才有了上篇文章得完善. 首先看一下新的项目结构图: 这个图和上篇文章中 ...

  5. Leetcode题解(20)

    59. Spiral Matrix II 题目 这道题copy网上的代码 class Solution { private: ][]; ][]; public: void dfs(int dep, v ...

  6. WebService WSDL结构分析

    转载地址:http://blog.csdn.net/sunchaohuang/article/details/3076375      WSDL (Web Services Description L ...

  7. 2017 多校训练 1002 Balala Power!

    Balala Power! Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)T ...

  8. echarts2.2.7本地搭建

    1.首先下载echarts2.2.7,解压到本地,解压后的目录如下: 2.在WebContent下建立一个名为build的目录,复制echarts2.2.7下面的build下面的dist目录到ecli ...

  9. sql脚本

    Windows下执行命令 \. d:\book.sql 这里使用了case when 这个小技巧来实现批量更新.//一个字段 UPDATE categories      SET display_or ...

  10. html的块级元素和内联元素

    常用的块级元素: address , center , div , dl ,, form , h1 , h2 , h3 , h4 , h5 , h6 , menu , ol , p , table , ...