poj 3648 2-SAT建图+topsort输出结果
其实2-SAT类型题目的类型比较明确,基本模型差不多是对于n组对称的点,通过给出的限制条件建图连边,然后通过缩点和判断冲突来解决问题。要注意的是在topsort输出结果的时候,缩点后建图需要反向连边,然后输出就可以了。2-sat题型差不多。
题意:新娘新郎分别坐在长桌两边,n-1队夫妇来参加婚礼,要求:夫妇不能坐在同一边,通奸关系不能坐在同一边。输出新娘对面的序列。
思路:对称关系:夫妇,限制条件:通奸关系。基础2-sat问题,缩点找冲突topsort输出结果一气呵成。。。
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define MAXN 2002
int instack[MAXN],stack[MAXN],fa[MAXN],vis[MAXN],head[MAXN],first[MAXN];
int dfn[MAXN],low[MAXN],in[MAXN],ans[MAXN],que[MAXN];
int a[MAXN][2],b[MAXN][2],flag[MAXN],cf[MAXN],col[MAXN];
int n,m,tot,scnt,time,tt,top,index; struct Edge
{
int v,next;
}edge[MAXN*MAXN],e[MAXN*MAXN]; void addedge(int u,int v)
{
edge[tot].v=v;
edge[tot].next=head[u];
head[u]=tot++;
}
void adde(int u,int v)
{
e[tt].v=v;
e[tt].next=first[u];
first[u]=tt++;
}
void tarjan(int u)
{
instack[u]=1;
stack[top++]=u;
dfn[u]=low[u]=++index;
int v;
for(int i=head[u];i!=-1;i=edge[i].next)
{
v=edge[i].v;
if(!dfn[v])
{
tarjan(v);
low[u]=min(low[u],low[v]);
}
else if(instack[v])
{
low[u]=min(low[u],dfn[v]);
}
}
if(low[u]==dfn[u])
{
scnt++;
do
{
v=stack[--top];
instack[v]=0;
fa[v]=scnt;
}while(v!=u);
}
}
void build()
{
for(int i=0;i<m;i++) //2*n的点
{
int t1,t2;char c,v;
scanf("%d%c",&t1,&c);
scanf("%d%c",&t2,&v);
if(c=='h'&&v=='h')
{
addedge(t1+n,t2);
addedge(t2+n,t1);
}
else if(c=='h'&&v=='w')
{
addedge(t1+n,t2+n);
addedge(t2,t1);
}
else if(c=='w'&&v=='h')
{
addedge(t1,t2);
addedge(t2+n,t1+n);
}
else if(c=='w'&&v=='w')
{
addedge(t1,t2+n);
addedge(t2,t1+n);
}
}
addedge(0,n);
}
void solve()
{
memset(dfn,0,sizeof(dfn));
memset(instack,0,sizeof(instack));
index=0;scnt=0;top=0;
for(int i=0;i<2*n;i++)
{
if(!dfn[i])
tarjan(i);
}
}
int check()
{
for(int i=0;i<n;i++)
{
if(fa[i]==fa[i+n]) //冲突
{
return 0;
}
cf[fa[i]]=fa[i+n];
cf[fa[i+n]]=fa[i];
}
return 1;
}
void topsort()
{
int head=1,tail=1;
for(int i=1;i<=scnt;i++)
{
if(in[i]==0)
{
que[tail++]=i;
}
}
int v;
while(tail>head)
{
int u=que[head];
head++;
if(col[u]==0) //对于未着色的点x,将x染成红色1,同时将与x矛盾的点cf[x]染成蓝色-1。
{
col[u]=1;
col[cf[u]]=-1;
}
for(int i=first[u];i!=-1;i=e[i].next)
{
v=e[i].v;
if(--in[v]==0)
{
que[tail++]=v;
}
}
}
memset(ans,0,sizeof(ans));
for(int i=0;i<n;i++)
{
if(col[fa[i]]==1)
{
ans[i]=1;
}
}
for(int i=1;i<n;i++)
{
if(ans[i])
printf("%dh ",i);
else
printf("%dw ",i);
}
printf("\n");
}
int main()
{
while(scanf("%d%d",&n,&m)!=EOF,(n||m))
{
memset(head,-1,sizeof(head));tot=0;
memset(first,-1,sizeof(first));tt=0; build();
solve();
if(!check())printf("bad luck\n");
else
{
memset(in,0,sizeof(in));
memset(col,0,sizeof(col));
for(int i=0;i<2*n;i++)
{
int v;
for(int j=head[i];j!=-1;j=edge[j].next)
{
v=edge[j].v;
if(fa[i]!=fa[v])
{
adde(fa[v],fa[i]);
in[fa[i]]++;
}
}
}
topsort();
}
}
return 0;
}
poj 3648 2-SAT建图+topsort输出结果的更多相关文章
- poj 3281 最大流+建图
很巧妙的思想 转自:http://www.cnblogs.com/kuangbin/archive/2012/08/21/2649850.html 本题能够想到用最大流做,那真的是太绝了.建模的方法很 ...
- POJ 1637 Sightseeing tour 建图+网络流
题意: 给定一个混合图,所谓混合图就是图中既有单向边也有双向边,现在求这样的图是否存在欧拉回路. 分析: 存在欧拉回路的有向图,必须满足[入度==出度],现在,有些边已经被定向,所以我们直接记录度数即 ...
- POJ 1149 网络流 合并建图
这个题目我敲了一个简单的EK,这不是难点 难点在于建图,按题目的要求 每个猪圈和顾客都建点的话,那也太多了...我看了Edelweiss里面的缩点方法才建好的图,哎,惭愧啊 实际那些猪圈根本不需要单独 ...
- POJ - 1149 PIGS (建图思维+最大流)
(点击查看原题) 题目分析 (以下均为 Edelweiss 大佬的思路,博主承认自己写不了这么好,但是学习的心促使我记录下这个好题的写法,所以代码是我写的) [题目大意] 有 M 个猪圈,每个猪圈里初 ...
- poj 3281 最大流建图
题目链接:http://poj.org/problem?id=3281 #include <cstdio> #include <cmath> #include <algo ...
- [poj 3281]最大流+建图很巧妙
题目链接:http://poj.org/problem?id=3281 看了kuangbin大佬的思路,还用着kuangbin板子orz http://www.cnblogs.com/kuangb ...
- POJ 1161 Walls ( Floyd && 建图 )
题意 : 在某国,城市之间建起了长城,每一条长城连接两座城市.每条长城互不相交.因此,从一个区域到另一个区域,需要经过一些城镇或者穿过一些长城.任意两个城市A和B之间最多只有一条长城,一端在A城市, ...
- POJ 2226 缩点建图+二分图最大匹配
这个最小覆盖但不同于 POJ 3041,只有横或者竖方向连通的点能用一块板子覆盖,非连续的,就要用多块 所以用类似并查集方法,分别横向与竖向缩点,有交集的地方就连通,再走一遍最大匹配即可 一开始还有点 ...
- POJ 2374 线段树建图+Dijkstra
题意: 思路: 线段树+Dijkstra(要堆优化的) 线段树要支持打标记 一个栅栏 拆成两个点 :左和右 新加一个栅栏的时候 看看左端点有没有被覆盖过 如果有的话 就分别从覆盖的那条线段的左右向当前 ...
随机推荐
- vue.js移动端app实战2:首页
貌似有部分人要求写的更详细,这里多写一点vuel-cli基础的配置 什么是vue-cli? 官方的解释是:A simple CLI for scaffolding Vue.js projects, 简 ...
- java实现网页爬虫
接着上面一篇对爬虫需要的java知识,这一篇目的就是在于网页爬虫的实现,对数据的获取,以便分析. -----> 目录: 1.爬虫原理 2.本地文件数据提取及分析 3.单网页数据的读取 4.运 ...
- Jdbc模版式写法与Spring-JdbcTemplate的比较
一.Jdbc模版式写法: [流程] 加载驱动 获取数据库链接 创建Statement对象(用于发送sql语句) 向数据库发送sql语句,获取数据库返回的结果集 从结果集中获取数据 释放资源 上述部分用 ...
- 从零入手微信小程序开发
前言: 哈哈,发现我写的随笔都是项目驱使的.当然,这篇也是项目驱使的咯,前段时间领导在玩微信时候发现了微信小程序的好处,流程,切换速度快等,然后就让小弟研究研究小程序的实现. 补充下,博客大多都是处理 ...
- python 集合 set
集合 set:可变集合与不可变集合 可变集合:可以向集合中添加删除元素,非可哈希的,不能用作字典的键,也不能做其他集合的元素. 把不同的元素组成一起形成集合,集合不记录元素的位置或者插入点,也就是不能 ...
- 基于 Laravel 开发 ThinkSNS+ 中前端的抉择(webpack/Vue)踩坑日记【ThinkSNS+研发日记系列】
在上一篇文章< ThinkSNS+基于Laravel master分支,从1到 0,再到0.1>,简单的介绍了 社群系统ThinkSNS+ ,这里分享在开发过程中,前端选择的心理活动. L ...
- 三种Join方法
NESTED LOOP JOIN (NLJOIN) 对于被连接的数据子集较小的情况,nested loop连接是个较好的选择.nested loop就是扫描一个表,每读到一条记录,就根据索引去另一个 ...
- Eclipse快捷键:同时显示两个一模一样的代码窗口
如图: 同样的一个HTML文件,在代码编辑窗口,显示两个. 快捷键: Ctrl + Shift + -(减号) 既可以展示两个,也可以只显示一个 附加一个快捷键: Ctrl + Shift + ...
- 迭代器(Iterator)
迭代器是一种设计模式,它是一个对象,它可以遍历并选择序列中的对象,而开发人员不需要了解该序列的底层结构.迭代器通常被称为"轻量级"对象,因为创建它的代价小. Java中的Itera ...
- Maven详解(一)------ Maven概述
1.引言 你能搜到这个教程,说明你对 Maven 感兴趣,但是又不是太理解.那么接下来这个系列的教程将会详细讲解 Maven 的用法,相信你看完之后,一定能对 Maven 的理解更进一步! 2.常规项 ...