【论文:麦克风阵列增强】Speech Enhancement Based on the General Transfer Function GSC and Postfiltering
作者:桂。
时间:2017-06-06 16:10:47
链接:http://www.cnblogs.com/xingshansi/p/6951494.html
原文链接:http://pan.baidu.com/s/1i51Kymp
omlsa代码:http://pan.baidu.com/s/1bpkvLVp
omlsa论文:http://pan.baidu.com/s/1i5j3Adv
前言
这篇文章是TF-GSC的改进版。虽然TF-GSC对于方向性干扰的抑制效果不错,对于弥散噪声(diffuse noise,题外话:不同方向directional noise的均值,或者接近这种效果,可以理解为diffuse noise.)TF-GSC性能下降明显,如果diffuse noise还是non-stationary,性能下降就更严重了。本文的思路是在TF-GSC的基础上,引入postfiltering(后置滤波),文中提到了三种方法:两种基于single channel-1)mixture maximum;2)OMLSA;但如果噪声both diffused and nonstationary,基于single channel的方法不再适用,这时候方法3仍然有效:a new multimicrophone postfilter method。
本文主要梳理基于TF-GSC的multimicrophone postfilter method,由于涉及到OMLSA,所以先简单介绍。基于single channel的mix-max方法是单独使用,后面有时间另写文章整理。
一、OMLSA思想
A-利用不存在概率的增强
容易推理基于MMSE准则的估计器
如果考虑语音存在概率,则估计器扩展为
理论上的值为0,上式简化为
B-语音不存在概率与最大似然准则估计器ML 结合
例如在语音增强一文中介绍的,基于最大似然准则的估计器为
从Y的概率密度形式
易知ML是基于语音存在的假设,结合语音存在概率,则基于ML准则的估计器为
对于)的计算可以利用贝叶斯准则
这里利用一个假设(也就是约束条件):噪声服从均值为0,方差相同的复高斯分布。,此时容易证明噪声幅度服从瑞利分布(相位为均匀分布,且二者独立),
H1假设下,此时
关于的计算参考语音增强一文的最大似然估计。例如假设语音存在/不存在是等可能的,,此时完成了的估计:
其中是a posteriori SNR,是a priori SNR。这个就是一般意义的参数估计了,在语音增强一文也给出了两个实现思路:1)Maximum-Likelihood Method;2)Decision-Directed Approach.至此也就完成了结合不存在概率的语音增强。
C-语音不存在概率与最小均方误差估计器MMSE 结合
其实基本思路都是一样的:
然后是利用贝叶斯进行概率估计
不同点在于这里进行了转化
其中
其中,denotes the a priori probability of speech absence for frequency bin k.从而
与ML准则不同的是,只有噪声时,是噪声D的分布,而不是其幅度(其实如果是幅度,也有一套方法,感兴趣可以自己推导推导)。仍是高斯分布
H1时,且认为D与X不相关,易得
代入上面的估计器,有
其中就是,则.进一步求解条件概率
其中
参数估计的细节与ML中的估计思路一致。从而实现信号的增强:
G就是MMSE估计器
不同之处是里边的替换成。
题外话:看看之前的参数估计与此处参数估计的联系
即
不得不佩服,这些理论的研究者真有一套。
D-语音不存在概率与对数最小均方误差估计器Log-MMSE 结合(OMLSA)
原理与其他方法一致
X的估计器
可以进一步写为
其中就是语音增强一文中的对数MMSE估计器。这里要有一点不同了,这里的概率是指数形式,有学者研究这样的增强效果并不比直接LSA更好,所以对其变形
还是与其他方法类似:概率相乘的形式。这里的与MMSE中的一致。至此完成了LSA与语音不存在概率的结合。但这套理论比较粗糙,一些学者(原文见这里,P262)提出了不同的角度:只有噪声时,不再认为严格为0,而是接近0:
其中,第一项就是最开始的LSA与语音存在概率的原始结合,这就是optimally modified log-spectrum amplitude (OMLSA) estimator ,即
按作者的说法,OMLSA特别是对于低SNR比其他方法更有效。
E-OMLSA中的参数估计
1-SNR估计
按原文的说法,虽然SNR估计理论上更漂亮,但实际效果并不好,因此直接对SNR的估计结果利用不存在概率:
需要注意的是:依赖于修正之后的SNR,而P(H1)则依赖修正之前的SNR。
2-语音存在概率的估计
上面分析的各套打法,都是用的固定先验概率P(H0)和P(H1)也就是q、1-q.这里提供了两个思路。
思路一(逐个频点处理):Hard threshold
这里其实是基于ML准则的估计:
更新公式
c是常数,文中设定为0.1.
思路二(逐个频点处理):soft threshold
利用
得出更新公式
有的学者简化了操作
是门限,文中设定为0.8.得出更新公式
c按经验取0.98.此处的更新需要借助VAD,仅当存在语音时迭代更新。
在OMLSA原文中,作者提出了另外一种估计思路。
只是带宽不同,估计思路一致(本质上都是基于能量的估计)
其中
h是带宽不同的窗函数。Pframe按帧处理
从而
其中至此完成了语音存在概率的估计
加个后处理修正,也就是q=min(q,q_max):
3-噪声频谱的估计
这里用到的是the minima-controlled recursive-averaging (MCRA)算法,这里是一套方法,另起文章梳理。
汇总一下OMLSA的思路:
OMLSA算法思路:
1)大框架:利用统计模型中,log-MMSE的估计器;
2)细节有三点:
2.1)priori SNR:修正了估计方法;
2.2)语音不存在概率:改进了估计方法;
2.3)噪声频谱:利用MCRA方法估计;
语音增强模型、priori SNR的估计、语音不存在概率估计、噪声频谱估计:这是四块技术,每一块都有多种方法,OMLSA是一个综合算法,每一块技术都用了其中一套打法而已。
二、论文理论框架
全文主要是TF-GSC框架+post-filtering。
TF-GSC:这篇博文已介绍。
Post-filtering:这篇博文已介绍。
参考
- Gannot, Sharon, and Israel Cohen. "Speech enhancement based on the general transfer function GSC and postfiltering." IEEE Transactions on Speech and Audio Processing 12.6 (2004): 561-571.
- Loizou, Philipos C. Speech enhancement: theory and practice. CRC press, 2013.
【论文:麦克风阵列增强】Speech Enhancement Based on the General Transfer Function GSC and Postfiltering的更多相关文章
- 论文翻译:Speech Enhancement Based on the General Transfer Function GSC and Postfiltering
论文地址:基于通用传递函数GSC和后置滤波的语音增强 博客作者:凌逆战 博客地址:https://www.cnblogs.com/LXP-Never/p/12232341.html 摘要 在语音增强应 ...
- 【论文:麦克风阵列增强】An alternative approach to linearly constrained adaptive beamforming
作者:桂. 时间:2017-06-03 21:46:59 链接:http://www.cnblogs.com/xingshansi/p/6937259.html 原文下载:http://pan.ba ...
- 【论文:麦克风阵列增强】Microphone Array Post-Filtering For Non-Stationary Noise Suppression
作者:桂. 时间:2017-06-08 08:01:41 链接:http://www.cnblogs.com/xingshansi/p/6957027.html 原文链接:http://pan.ba ...
- 【论文:麦克风阵列增强】Signal Enhancement Using Beamforming and Nonstationarity with Applications to Speech
作者:桂. 时间:2017-06-06 13:25:58 链接:http://www.cnblogs.com/xingshansi/p/6943833.html 论文原文:http://pan.bai ...
- 【论文:麦克风阵列增强】An Algorithm For Linearly Constrained Adaptive Array Processing
作者:桂. 时间:2017-06-03 15:06:37 链接:http://www.cnblogs.com/xingshansi/p/6937635.html 原文链接:http://pan.ba ...
- 论文翻译:2021_Low-Delay Speech Enhancement Using Perceptually Motivated Target and Loss
论文地址:使用感知动机目标和损失的低延迟语音增强 引用格式:Zhang X, Ren X, Zheng X, et al. Low-Delay Speech Enhancement Using Per ...
- 【麦克风阵列增强】Delay and sum beamforming
作者:桂. 时间:2017-06-03 15:40:33 链接:http://www.cnblogs.com/xingshansi/p/6937576.html 前言 本文主要记录麦克风阵列的几个基 ...
- 论文翻译:2021_MetricGAN+: An Improved Version of MetricGAN for Speech Enhancement
论文地址:MetricGAN+:用于语音增强的 MetricGAN 的改进版本 论文代码:https://github.com/JasonSWFu/MetricGAN 引用格式:Fu S W, Yu ...
- 论文翻译:2021_DeepFilterNet: A Low Complexity Speech Enhancement Framework for Full-Band Audio based on Deep Filtering
论文地址:DeepFilterNet:基于深度滤波的全频带音频低复杂度语音增强框架 论文代码:https://github.com/ Rikorose/DeepFilterNet 引用:Schröte ...
随机推荐
- 树莓派安装ubuntu-server,配置镜像,安装python/mysql/samba记录
目标: 1/在raspberrypi 3B上安装ubuntu-server 2/配置好python/mysql/samba等服务,实现爬虫稳定运行我的硬件准备: 1/raspberrypi 3B 2/ ...
- PPT要你好看---读书笔记
PPT要你好看.主要是设计的思维. 下图,对于现阶段的我来说,收获最大的是毕业答辩PPT的制作. 以及整体的PPT制作思路.
- 什么是体数据可视化(Volume data visualization)?及体绘制的各种算法和技术的特点?
该文对体数据进行综述,并介绍了体数据的各种算法和技术的特点. 前言 由于3D数据采集领域的高速发展,以及在具有交互式帧率的现代化工作站上执行高级可视化的可能性,体数据的重要性将继续迅速增长. 数据集可 ...
- bash Shell条件测试
3种测试命令: test EXPRESSION [ EXPRESSION ] [[ EXPRESSION ]] 注意:EXPRESSION前后必须有空白字符 bash的测试类型 数值测试: -eq: ...
- Redux-saga
Redux-saga学习笔记 概述 Redux-saga在Redux应用中扮演'中间件'的角色,主要用来执行数据流中的异步操作.主要通过ES6中的generator函数和yield关键字来以同步的方式 ...
- Linux五种IO模型性能分析
1. 概念理解 在进行网络编程时,我们常常见到同步(Sync)/异步(Async),阻塞(Block)/非阻塞(Unblock)四种调用方式: 同步: 所谓同步,就是在发出一个功能调用时, ...
- RabbitMQ集群和失败处理
RabbitMQ内建集群的设计用于完成两个目标:允许消费者和生产者在RabbitMQ节点在奔溃的情况下继续运行,以及通过添加更多的节点来线性扩展消息通信的吞吐量.当失去一个RabbitMQ节点时客户端 ...
- Charles Proxy代理使用简要说明
1.去官网下载免费试用版: http://www.charlesproxy.com/ (需要机器有Java运行时)或下载破解注册版:http://charles.iiilab.com/,安装后开启默认 ...
- Hive的分区操作~~~~~~
一.Hive分区(一).分区概念:为什么要创建分区:单个表数据量越来越大的时候,在Hive Select查询中一般会扫描整个表内容,会消耗很多时间做没必要的工作.有时候只需要扫描表中关心的一部分数据, ...
- (转ORCLE导入导出命令)
oracle数据库导入导出命令! Oracle数据导入导出imp/exp 功能:Oracle数据导入导出imp/exp就相当与oracle数据还原与备份. 大多情况都可以用Oracle数据导入导出 ...