除特别注明外,本站所有文章均为原创,转载请注明地址

AbstractQueuedSynchronizer(AQS)是JDK中实现并发编程的核心,平时我们工作中经常用到的ReentrantLock,CountDownLatch等都是基于它来实现的。

AQS类中维护了一个双向链表(FIFO队列), 如下图所示:

队列中的每个元素都用一个Node表示,我们可以看到,Node类中有几个静态常量表示的状态:

static final class Node {
/** Marker to indicate a node is waiting in shared mode */
static final Node SHARED = new Node();
/** Marker to indicate a node is waiting in exclusive mode */
static final Node EXCLUSIVE = null; /** waitStatus value to indicate thread has cancelled */
static final int CANCELLED = 1;
/** waitStatus value to indicate successor's thread needs unparking */
static final int SIGNAL = -1;
/** waitStatus value to indicate thread is waiting on condition */
static final int CONDITION = -2;
static final int PROPAGATE = -3;
volatile int waitStatus;
volatile Node prev; volatile Node next;
volatile Thread thread; Node nextWaiter; final boolean isShared() {
return nextWaiter == SHARED;
} final Node predecessor() throws NullPointerException {
Node p = prev;
if (p == null)
throw new NullPointerException();
else
return p;
} Node() {
} Node(Thread thread, Node mode) {
this.nextWaiter = mode;
this.thread = thread;
} Node(Thread thread, int waitStatus) {
this.waitStatus = waitStatus;
this.thread = thread;
}
}

此外,AQS中通过一个state的volatile变量表示同步状态。

那么AQS是如何通过队列实现锁操作的呢?

一.获取锁操作

下面的是AQS中执行获取锁的代码:

public final void acquire(int arg) {
/**通过tryAcquire获取锁,如果成功获取到锁直接终止(selfInterrupt),否则将当前线程插入队列
* 这里的Node.EXCLUSIVE表示创建一个独占模式的节点
*/
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}

然而实际上,AQS中并没有实现上面的tryAcquire(arg)方法,具体获取锁的操作需要由其子类比如ReentrantLock中的Sync实现:

protected final boolean tryAcquire(int acquires) {
//取到当前线程
final Thread current = Thread.currentThread();
//获取到state值(前文提到)
int c = getState();
//state为0标识当前没有线程占有锁
//如果队列中前面没有元素(因为是公平锁的原因,非公平锁中不进行判断,如果state为0直接获取到锁),CAS修改当前值
if (c == 0) {
if (!hasQueuedPredecessors() &&
compareAndSetState(0, acquires)) {
//标识当前线程成功获取锁
setExclusiveOwnerThread(current);
return true;
}
}
//state不为0,且占有锁的线程是当前线程(这里涉及到一个可重入锁的概念)
else if (current == getExclusiveOwnerThread()) {
//增加重入次数
int nextc = c + acquires;
//如果次数值溢出,抛出异常
if (nextc < 0)
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
//如果锁已经被其它线程占用,获取锁失败
return false;
}

上面的代码注释中提到了可重入锁的概念,可重入锁又叫递归锁,简单来讲就是已经获取到锁的线程还可以再次获取到同一个锁,我们通常使用的syschronized操作,ReentrantLock都属于可重入锁。自旋锁则不属于可重入锁。

下面我们再看一下如果tryAcquire失败,AQS是如何处理的:

private Node addWaiter(Node mode) {
//创建一个队列的Node
Node node = new Node(Thread.currentThread(), mode);
//获取当前队列尾部
Node pred = tail;
if (pred != null) {
//CAS操作尝试插入Node到等待队列,这里只尝试一次
node.prev = pred;
if (compareAndSetTail(pred, node)) {
pred.next = node;
return node;
}
}
//如果添加失败,enq这里会做自旋操作,知道插入成功。
enq(node);
return node;
}
//自旋操作添加元素到队列尾部
private Node enq(final Node node) {
for (;;) {
//获取尾节点
Node t = tail;
//如果尾节点为空,说明当前队列是空,需要初始化队列
if (t == null) {
//初始化当前队列
if (compareAndSetHead(new Node()))
tail = head;
} else {
//通过CAS操作插入Node,设置Node为队列的尾节点,并返回Node
node.prev = t;
if (compareAndSetTail(t, node)) {
t.next = node;
return t;
}
}
}
}
/**
* 如果插入的节点前面是head,尝试获取锁,
*/
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
boolean interrupted = false;
//自旋操作
for (;;) {
//获取当前插入节点的前置节点
final Node p = node.predecessor();
//前置节点是head,尝试获取锁
if (p == head && tryAcquire(arg)) {
//设置head为当前节点,表示获取锁成功
setHead(node);
p.next = null; // help GC
failed = false;
return interrupted;
}
//是否挂起当前线程,如果是,则挂起线程
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}

上面的代码有些复杂,这里解释一下,之前的addWaiter代码已经将node加入了等待队列,所以这里需要让节点队列中挂起,等待唤醒。队列的head节点代表的是当前占有锁的节点,首先判断插入的node的前置节点是否是head,如果是,尝试获取锁(tryAcquire),如果获取成功则将head设置为当前节点;如果获取失败需要判断是否挂起当前线程。

/**
* 判断是否可以挂起当前线程
*/
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
//ws为node前置节点的状态
int ws = pred.waitStatus;
if (ws == Node.SIGNAL)
       //如果前置节点状态为SIGNAL,当前节点可以挂起
return true;
if (ws > 0) { //通过循环跳过所有的CANCELLED节点,找到一个正常的节点,将当前节点排在它后面 //GC会将这些CANCELLED节点回收
do {
node.prev = pred = pred.prev;
} while (pred.waitStatus > 0);
pred.next = node;
} else {
//将前置节点的状态修改为SIGNAL
compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
}
return false;
}
//通过LockSupport挂起线程,等待唤醒
private final boolean parkAndCheckInterrupt() {
LockSupport.park(this);
return Thread.interrupted();
}

二.释放锁操作

有了获取锁的基础,再来看释放锁的源码就比较容易了,下面的代码执行的是AQS中释放锁的操作:

//释放锁的操作
public final boolean release(int arg)
//尝试释放锁,这里tryRelease同样由子类实现,如果失败直接返回false
if (tryRelease(arg)) {
Node h = head;
if (h != null && h.waitStatus != 0)
unparkSuccessor(h);
return true;
}
return false;
}

下面的代码是尝试释放锁的操作:

 protected final boolean tryRelease(int releases) {
//获取state值,释放一定值
int c = getState() - releases;
if (Thread.currentThread() != getExclusiveOwnerThread())
throw new IllegalMonitorStateException();
boolean free = false;
//如果差是0,表示锁已经完全释放
if (c == 0) {
free = true;
//下面设置为null表示当前没有线程占用锁
setExclusiveOwnerThread(null);
}
//如果c不是0表示锁还没有完全释放,修改state值
setState(c);
return free;
}

释放锁后,还需要唤醒队列中的一个后继节点:

private void unparkSuccessor(Node node) {
//将当前节点的状态修改为0
int ws = node.waitStatus;
if (ws < 0)
compareAndSetWaitStatus(node, ws, 0);
//从队列里找出下一个需要唤醒的节点
//首先是直接后继
Node s = node.next;
//如果直接后继为空或者它的waitStatus大于0(已经放弃获取锁了),我们就遍历整个队列,
//获取第一个需要唤醒的节点
if (s == null || s.waitStatus > 0) {
s = null;
for (Node t = tail; t != null && t != node; t = t.prev)
if (t.waitStatus <= 0)
s = t;
}
if (s != null)
//将节点唤醒
LockSupport.unpark(s.thread);
}

JDK源码之AQS源码剖析的更多相关文章

  1. 深度分析ReentrantLock源码及AQS源码,从入门到入坟,建议先收藏!

    一.ReentrantLock与AQS简介 在Java5.0之前,在协调对共享对象的访问时可以使用的机制只有synchronized和volatile.Java5.0增加了一种新的机制:Reentra ...

  2. 全网最详细的AbstractQueuedSynchronizer(AQS)源码剖析(一)AQS基础

    AbstractQueuedSynchronizer(以下简称AQS)的内容确实有点多,博主考虑再三,还是决定把它拆成三期.原因有三,一是放入同一篇博客势必影响阅读体验,而是为了表达对这个伟大基础并发 ...

  3. 全网最详细的AbstractQueuedSynchronizer(AQS)源码剖析(二)资源的获取和释放

    上期的<全网最详细的AbstractQueuedSynchronizer(AQS)源码剖析(一)AQS基础>中介绍了什么是AQS,以及AQS的基本结构.有了这些概念做铺垫之后,我们就可以正 ...

  4. ArrayDeque(JDK双端队列)源码深度剖析

    ArrayDeque(JDK双端队列)源码深度剖析 前言 在本篇文章当中主要跟大家介绍JDK给我们提供的一种用数组实现的双端队列,在之前的文章LinkedList源码剖析当中我们已经介绍了一种双端队列 ...

  5. 硬核剖析Java锁底层AQS源码,深入理解底层架构设计

    我们常见的并发锁ReentrantLock.CountDownLatch.Semaphore.CyclicBarrier都是基于AQS实现的,所以说不懂AQS实现原理的,就不能说了解Java锁. 上篇 ...

  6. ReentrantLock 与 AQS 源码分析

    ReentrantLock 与 AQS 源码分析 1. 基本结构    重入锁 ReetrantLock,JDK 1.5新增的类,作用与synchronized关键字相当,但比synchronized ...

  7. AQS源码详细解读

    AQS源码详细解读 目录 AQS源码详细解读 基础 CAS相关知识 通过标识位进行线程挂起的并发编程范式 MPSC队列的实现技巧 代码讲解 独占模式 独占模式下请求资源 独占模式下的释放资源 共享模式 ...

  8. AQS源码深入分析之共享模式-你知道为什么AQS中要有PROPAGATE这个状态吗?

    本文基于JDK-8u261源码分析 本篇文章为AQS系列文的第二篇,前文请看:[传送门] 第一篇:AQS源码深入分析之独占模式-ReentrantLock锁特性详解 1 Semaphore概览 共享模 ...

  9. AQS源码一窥-JUC系列

    AQS源码一窥 考虑到AQS的代码量较大,涉及信息量也较多,计划是先使用较常用的ReentrantLock使用代码对AQS源码进行一个分析,一窥内部实现,然后再全面分析完AQS,最后把以它为基础的同步 ...

随机推荐

  1. 参加光环国际PRINCE2培训

    挑战埃及是全球首套能够同时适配PRINCE2认证人群,PMP认证人群的项目管理沙盘演练游戏.沙盘通过使用乐高积木作为道具,通过一场互动性极强的情景模拟为全球项目经理还原了四千年前古埃及金字塔建造的情景 ...

  2. .NET Core开源组件:后台任务利器之Hangfire

    一.简述 Hangfire作为一款高人气且容易上手的分布式后台执行服务,支持多种数据库.在.net core的环境中,由Core自带的DI管理着生命周期,免去了在NF4.X环境中配置always ru ...

  3. webpack快速掌握教程

    转载http://yijiebuyi.com/blog/46fb97b11fb8f4055e0b04d1cecb1f69.html #为什么用webpack 如果我们 前端 javascript 能像 ...

  4. .net mvc------下拉列表DropDownList控件------绑定数据

    下拉列表 以性别为例 绑定可以了,可以显示了,但有些地方就能传值,有些地方就会出错提示,如有大神请指教.... 错误如下: 具有键"sex"的 ViewData 项属于类型&quo ...

  5. 在Selenium Webdriver中使用XPath Contains、Sibling函数定位

    前言 在一般情况下,我们通过简单的xpath即可定位到目标元素,但对于一些既没id又没name,而且其他属性都是动态的情况就很难通过简单的方式进行定位了. 在这种情况下,我们需要使用xpath1.0内 ...

  6. 编译MangosZero

    最近研究了一下魔兽世界模拟器MangosZero,花了两天时间终于编译成功!现在把编译的过程做个完整的记录,以便让想要学习编译的同学们少走弯路! 服务器端运行界面: 客户端运行界面: 一:下载源程序 ...

  7. Mysql安装设置建议(参数设置)

    当我们监测MySQL性能时,人们希望我们能够检视一下MySQL配置然后给出一些提高建议.许多人在事后都非常惊讶,因为我们建议他们仅仅改动几个设置,即使是这里有好几百个配置项.这篇文章的目的在于给你一份 ...

  8. 生肖年(switch练习)

    <!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...

  9. Python之路- 反射&定制自己的数据类型

    一.isinstance和issubclass isinstance(obj,cls)检查是否obj是否是类 cls 的对象 issubclass(sub, super)检查sub类是否是 super ...

  10. DirectFB环境搭建

    一.下载安装包 http://www.directfb.org/index.php?path=Main%2FDownloads git clone git://git.directfb.org/git ...