【UVA 1380】 A Scheduling Problem (树形DP)
Description
There is a set of jobs, say x1, x2,..., xn <tex2html_verbatim_mark>, to be scheduled. Each job needs one day to complete. Your task is to schedule the jobs so that they can be nished in a minimum number of days. There are two types of constraints: Conflict constraints and Precedence constraints.
Conflict constraints: Some pairs of jobs cannot be done on the same day. (Maybe job xi <tex2html_verbatim_mark>and job xj <tex2html_verbatim_mark>need to use the same machine. So they must be done in different dates).
Precedence constraints: For some pairs of jobs, one needs to be completed before the other can start. For example, maybe job xi <tex2html_verbatim_mark>cannot be started before job xj <tex2html_verbatim_mark>is completed.
The scheduling needs to satisfy all the constraints.
To record the constraints, we build a graph G <tex2html_verbatim_mark>whose vertices are the jobs: x1, x2,..., xn <tex2html_verbatim_mark>. Connect xi <tex2html_verbatim_mark>and xj <tex2html_verbatim_mark>by an undirected edge if xi <tex2html_verbatim_mark>and xj <tex2html_verbatim_mark>cannot be done on the same day. Connect xi <tex2html_verbatim_mark>and xj <tex2html_verbatim_mark>by a directed edge from xi <tex2html_verbatim_mark>to xj <tex2html_verbatim_mark>if xi <tex2html_verbatim_mark>needs to be completed before xj <tex2html_verbatim_mark>starts.
If the graph is complicated, the scheduling problem is very hard. Now we assume that for our problems, the constraints are not very complicated: The graph G <tex2html_verbatim_mark>we need to consider are always trees (after omitting the directions of the edges). Your task is to nd out the number of days needed in an optimal scheduling for such inputs. You can use the following result:
If G <tex2html_verbatim_mark>is a tree, then the number of days needed is either k <tex2html_verbatim_mark>or k + 1 <tex2html_verbatim_mark>, where k <tex2html_verbatim_mark>is the maximum number of vertices contained in a directed path of G <tex2html_verbatim_mark>, i.e., a path P = (x1, x2,..., xk) <tex2html_verbatim_mark>, where for each i = 1, 2,..., k - 1 <tex2html_verbatim_mark>, there is a directed edge from xi <tex2html_verbatim_mark>to xi+1 <tex2html_verbatim_mark>.
Figure 1 below is such an example. There are six jobs: 1, 2, 3, 4, 5, 6. From this figure, we know that job 1 and job 2 must be done in different dates. Job 1 needs to be done before job 3, job 3 before job 5, job 2 before job 4 and job 4 before job 6. It is easy to verify that the minimum days to finish all the jobs is 4 days. In this example, the maximum number k <tex2html_verbatim_mark>of vertices contained in a directed path is 3.
<tex2html_verbatim_mark>Figure 1: ExampleInput
The input consists of a number of trees (whose edges may be directed or undirected), say T1, T2,..., Tm <tex2html_verbatim_mark>, where m20 <tex2html_verbatim_mark>. Each tree has at most 200 vertices. We represent each tree as a rooted tree (just for convenience of presentation, the root is an arbitrarily chosen vertex). Information of each of the trees are contained in a number of lines. Each line starts with a vertex (which is a positive integer) followed by all its sons (which are also positive integers), then followed by a 0. Note that 0 is not a vertex, and it indicates the end of that line. Now some of the edges are directed. The direction of an edge can be from father to son, and can also be from son to father. If the edge is from father to son, then we put a letter `` d" after that son (meaning that it is a downward edge). If the edge is from son to father, then we put a letter `` u" after that son (meaning that it is an upward edge). If the edge is undirected then we do not put any letter after the son.
The first case of the sample input below is the example in Figure 1.
Consecutive vertices (numbers or numbers with a letter after it) in a line are separated by a single space. A line containing a single 0 means the end of that tree. The next tree starts in the next line. Two consecutive lines of single 0 means the end of the input.
Output
The output contains one line for each test case. Each line contains a number, which is the minimum number of days to finish all the jobs in that test case.
Sample Input
1 2 3d 0
2 4d 0
3 5d 0
4 6d 0
0
1 2d 3u 4 0
0
1 2d 3 0
2 4d 5d 10 0
3 6d 7d 11 0
6 8d 9 12 0
0
1 2 3 4 0
2 5d 0
3 6d 0
4 7d 0
5 8d 0
6 9d 0
7 10d 0
0
0Sample Output
4
3
4
3
【题意】
有n个恰好需要一天完成的任务,要求用最少时间做完。任务可以并行完成并行完成,但必须满足一些约束。约束是给一个图,A-B表示A、B不能同一天完成。A->B表示先做A才能做B。输入保证约束图是一棵树某些边定向而成的,问完成所有任务的最少时间。 【分析】
紫书上的题,挺难的。
二分答案x,判断是否可以给无向边定向,使得最长链点数不超过x。
f[i]表示以i为根的子树内全部边定向后,最长链点数不超过x的前提下,形如“后代到i”的最长链的最小值,同理定义g[i]为形如“i到后代”的最长链的最小值。
设y为i的某个孩子。
转化无向边的过程分为两种情况:
a. 如果是有向边,则经过子树的根结点的最值贡献为f+g+1。
b. 如果一个结点a的子结点存在无向边,求f[i]时,目的是f[i]+g[i]+1<=x的前提下f[i]最小。首先把所有没有定向的f(y)排序,假设把第p小的定位向上,那么比p小的也定为向上百利而无一害。然后剩下的变成向下,判断这样的f是否成立,不成立f为INF。
这种方法时间复杂度:n^2*logn
代码如下:
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Maxn 210
#define INF 0xfffffff struct node
{
int x,y,next,p;
}t[*Maxn];int len; int first[Maxn],n; void ins(int x,int y,int p)
{
t[++len].x=x;t[len].y=y;t[len].p=p;
t[len].next=first[x];first[x]=len;
} int mymax(int x,int y) {return x>y?x:y;}
int mymin(int x,int y) {return x<y?x:y;} bool init()
{
int x,y;
char c;
len=;
memset(first,,sizeof(first));
n=;
while()
{
scanf("%d",&x);getchar();
if(x==) break;
n=x;
while()
{
scanf("%d",&y);
n=mymax(n,y);
if(y==) {getchar();break;}
scanf("%c",&c);
if(c=='u'||c=='d')
{
if(c=='d') ins(x,y,),ins(y,x,-);
else ins(y,x,),ins(x,y,-);
scanf("%c",&c);
}
else {ins(x,y,);ins(y,x,);}
}
}
if(n==) return ;
return ;
} int f[Maxn],g[Maxn]; struct hp
{
int x,y;
}a[Maxn]; bool cmp(hp x,hp y) {return x.x<y.x;}
bool cmp2(hp x,hp y) {return x.y<y.y;} bool dp(int x,int fa,int now)
{
f[x]=g[x]=INF;
int mxf=-,mxg=-;
for(int i=first[x];i;i=t[i].next) if(t[i].y!=fa)
{
int y=t[i].y;
dp(y,x,now);
if(f[y]>=INF) return ;
}
int cnt=;
for(int i=first[x];i;i=t[i].next) if(t[i].y!=fa)
{
int y=t[i].y;
if(t[i].p==)
{
a[++cnt].x=f[y];
a[cnt].y=g[y];
}
else if(t[i].p==-) mxf=mymax(mxf,f[y]);
else mxg=mymax(mxg,g[y]);
}
if(cnt==)
{
if(mxf+mxg+<=now)
f[x]=mymin(f[x],mxf+),g[x]=mymin(g[x],mxg+);
}
else
{
sort(a+,a++cnt,cmp);
int pg=mxg;
for(int i=cnt;i>=;i--)
{
int nx=mymax(a[i].x,mxf);
if(nx+mxg+<=now) f[x]=nx+;
mxg=mymax(mxg,a[i].y);
}
// if(mxg+mxf<=now) f[x]=mxf+1;
sort(a+,a++cnt,cmp2);
mxg=pg;
for(int i=cnt;i>=;i--)
{
int nx=mymax(a[i].y,mxg);
if(nx+mxf+<=now) g[x]=nx+;
mxf=mymax(mxf,a[i].x);
}
// if(mxf+2<=now) g[x]=mxg+1;
}
return f[x]<INF;
} int ffind(int l,int r)
{
while(l<r)
{
int mid=(l+r)>>;
if(dp(,,mid)) r=mid;
else l=mid+;
}
printf("%d\n",l);
} int main()
{
a[].x=a[].y=-;
while()
{
bool z=init();
if(z==) break;
ffind(,n);
}
return ;
}
[UVA1380]
来一份GDXB的详细题解:
http://www.cnblogs.com/KonjakJuruo/p/5969831.html
balabalabala...
2016-10-17 20:26:08
然而,事实上,因为n很小,有更简单的方法!!!n^3过了。。。
dp[i][j]表示计算i这棵树,且i在第j天完成,的最短时间。
dp[i][j]=max(dp[i][j],min(dp[y][k])) [y是i的孩子,k是y的可行时间]
呵呵,100年打第一种方法,第二种方法秒A。呵呵~~ 2016-10-17 21:00:06
【UVA 1380】 A Scheduling Problem (树形DP)的更多相关文章
- 【暑假】[深入动态规划]UVa 1380 A Scheduling Problem
UVa 1380 A Scheduling Problem 题目: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=41557 ...
- UVA 1380 A Scheduling Problem
题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem ...
- [HDU 5293]Tree chain problem(树形dp+树链剖分)
[HDU 5293]Tree chain problem(树形dp+树链剖分) 题面 在一棵树中,给出若干条链和链的权值,求选取不相交的链使得权值和最大. 分析 考虑树形dp,dp[x]表示以x为子树 ...
- UVA 10253 Series-Parallel Networks (树形dp)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud Series-Parallel Networks Input: standard ...
- HDU 5293 Annoying problem 树形dp dfs序 树状数组 lca
Annoying problem 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5293 Description Coco has a tree, w ...
- HDU 5293 Tree chain problem 树形dp+dfs序+树状数组+LCA
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5293 题意: 给你一些链,每条链都有自己的价值,求不相交不重合的链能够组成的最大价值. 题解: 树形 ...
- hdu5293 Tree chain problem 树形dp+线段树
题目:pid=5293">http://acm.hdu.edu.cn/showproblem.php?pid=5293 在一棵树中,给出若干条链和链的权值.求选取不相交的链使得权值和最 ...
- UVa 12186 - Another Crisis(树形DP)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- UVa 1218 - Perfect Service(树形DP)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
随机推荐
- create---创建表
create table table_name (列名 数据类型 是否非空 约束信息, 列名 数据类型 是否非空 约束信息, 列名 数据类型 是否非空 约束信息, ........); 例: crea ...
- 请列出你在从事IT生涯中,最难以忘怀的一次误操作
IT系统最怕什么,我觉得就两点: 1.不可靠的软硬件. 2.误操作. 第一点就不用解释了,第二点是该文的内容,主要摘选自ITPUB的精华贴——[精华] 请列出你在从事DBA生涯中,最难以忘怀的一次误操 ...
- Java8特性---关于Null
为了防止无良网站的爬虫抓取文章,特此标识,转载请注明文章出处.LaplaceDemon/SJQ. http://www.cnblogs.com/shijiaqi1066/p/5713941.html ...
- webresource.axd文件的配置及使用
今天看到同事的代码中使用到了webresource.axd,特地认真地看了一下它的使用.主要用途有两点: 1.当作httphandler用,但是比handler更好用一点,不需要考虑路径,用的时候,只 ...
- UItextField常用方法
- (void)viewDidLoad { [super viewDidLoad]; // Do any additional setup after loading the view ...
- 解决Windows+Eclipse+Python错误: SyntaxError: Non-ASCII character
这个问题出现的原因是在文中使用了中文或者其他的非英文字符 最简单的解决办法: 在文件的第一行加上编码表示,切记:一定要是第一行,而且在前面没有任何对文件和项目的注释. 也就是说在Windows Ecl ...
- Hibernate的检索策略
hibernate 的中的session依照load()和get()按照参数的制定OID(ObjctID)去加载一个持久化对象.另外Query.list()方法则按照HQL语句去加载持久化的对象. 以 ...
- hbuider 中点击就显示出一个单选的列表 ,然后后台跨域向里面动态添加数据,注意里面的格式是json object
jsp页面: <li class="mui-table-view-cell" onclick="showActionSheet()"> <di ...
- google+ 登录API 使用 javascript sdk 快速入门 (图解)
准备工作: 打开Google API 控制台 : https://code.google.com/apis/console 点击 My Project (我的项目) 按照图示流程,您将完成一个goog ...
- 直接通过curl方式取得数据、模拟登陆、POST数据
博客园的Markdown编辑器太坑爹了@!!! 算了.不用格式了!!! /********************** curl 系列 ***********************/ //直接通过c ...