Description

There is a set of jobs, say x1x2,..., xn <tex2html_verbatim_mark>, to be scheduled. Each job needs one day to complete. Your task is to schedule the jobs so that they can be nished in a minimum number of days. There are two types of constraints: Conflict constraints and Precedence constraints.

Conflict constraints: Some pairs of jobs cannot be done on the same day. (Maybe job xi <tex2html_verbatim_mark>and job xj <tex2html_verbatim_mark>need to use the same machine. So they must be done in different dates).

Precedence constraints: For some pairs of jobs, one needs to be completed before the other can start. For example, maybe job xi <tex2html_verbatim_mark>cannot be started before job xj <tex2html_verbatim_mark>is completed.

The scheduling needs to satisfy all the constraints.

To record the constraints, we build a graph G <tex2html_verbatim_mark>whose vertices are the jobs: x1x2,..., xn <tex2html_verbatim_mark>. Connect xi <tex2html_verbatim_mark>and xj <tex2html_verbatim_mark>by an undirected edge if xi <tex2html_verbatim_mark>and xj <tex2html_verbatim_mark>cannot be done on the same day. Connect xi <tex2html_verbatim_mark>and xj <tex2html_verbatim_mark>by a directed edge from xi <tex2html_verbatim_mark>to xj <tex2html_verbatim_mark>if xi <tex2html_verbatim_mark>needs to be completed before xj <tex2html_verbatim_mark>starts.

If the graph is complicated, the scheduling problem is very hard. Now we assume that for our problems, the constraints are not very complicated: The graph G <tex2html_verbatim_mark>we need to consider are always trees (after omitting the directions of the edges). Your task is to nd out the number of days needed in an optimal scheduling for such inputs. You can use the following result:

If G <tex2html_verbatim_mark>is a tree, then the number of days needed is either k <tex2html_verbatim_mark>or k + 1 <tex2html_verbatim_mark>, where k <tex2html_verbatim_mark>is the maximum number of vertices contained in a directed path of G <tex2html_verbatim_mark>, i.e., a path P = (x1x2,..., xk) <tex2html_verbatim_mark>, where for each i = 1, 2,..., k - 1 <tex2html_verbatim_mark>, there is a directed edge from xi <tex2html_verbatim_mark>to xi+1 <tex2html_verbatim_mark>.

Figure 1 below is such an example. There are six jobs: 1, 2, 3, 4, 5, 6. From this figure, we know that job 1 and job 2 must be done in different dates. Job 1 needs to be done before job 3, job 3 before job 5, job 2 before job 4 and job 4 before job 6. It is easy to verify that the minimum days to finish all the jobs is 4 days. In this example, the maximum number k <tex2html_verbatim_mark>of vertices contained in a directed path is 3.

<tex2html_verbatim_mark>
Figure 1: Example

Input

The input consists of a number of trees (whose edges may be directed or undirected), say T1T2,..., Tm <tex2html_verbatim_mark>, where m20 <tex2html_verbatim_mark>. Each tree has at most 200 vertices. We represent each tree as a rooted tree (just for convenience of presentation, the root is an arbitrarily chosen vertex). Information of each of the trees are contained in a number of lines. Each line starts with a vertex (which is a positive integer) followed by all its sons (which are also positive integers), then followed by a 0. Note that 0 is not a vertex, and it indicates the end of that line. Now some of the edges are directed. The direction of an edge can be from father to son, and can also be from son to father. If the edge is from father to son, then we put a letter `` d" after that son (meaning that it is a downward edge). If the edge is from son to father, then we put a letter `` u" after that son (meaning that it is an upward edge). If the edge is undirected then we do not put any letter after the son.

The first case of the sample input below is the example in Figure 1.

Consecutive vertices (numbers or numbers with a letter after it) in a line are separated by a single space. A line containing a single 0 means the end of that tree. The next tree starts in the next line. Two consecutive lines of single 0 means the end of the input.

Output

The output contains one line for each test case. Each line contains a number, which is the minimum number of days to finish all the jobs in that test case.

Sample Input

1 2 3d 0
2 4d 0
3 5d 0
4 6d 0
0
1 2d 3u 4 0
0
1 2d 3 0
2 4d 5d 10 0
3 6d 7d 11 0
6 8d 9 12 0
0
1 2 3 4 0
2 5d 0
3 6d 0
4 7d 0
5 8d 0
6 9d 0
7 10d 0
0
0

Sample Output

4
3
4
3
 
【题意】
  有n个恰好需要一天完成的任务,要求用最少时间做完。任务可以并行完成并行完成,但必须满足一些约束。约束是给一个图,A-B表示A、B不能同一天完成。A->B表示先做A才能做B。输入保证约束图是一棵树某些边定向而成的,问完成所有任务的最少时间。 【分析】
  

  紫书上的题,挺难的。
  二分答案x,判断是否可以给无向边定向,使得最长链点数不超过x。
  f[i]表示以i为根的子树内全部边定向后,最长链点数不超过x的前提下,形如“后代到i”的最长链的最小值,同理定义g[i]为形如“i到后代”的最长链的最小值。
  设y为i的某个孩子。

  转化无向边的过程分为两种情况:

  a. 如果是有向边,则经过子树的根结点的最值贡献为f+g+1。

  b. 如果一个结点a的子结点存在无向边,求f[i]时,目的是f[i]+g[i]+1<=x的前提下f[i]最小。首先把所有没有定向的f(y)排序,假设把第p小的定位向上,那么比p小的也定为向上百利而无一害。然后剩下的变成向下,判断这样的f是否成立,不成立f为INF。

  这种方法时间复杂度:n^2*logn

代码如下:

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Maxn 210
#define INF 0xfffffff struct node
{
int x,y,next,p;
}t[*Maxn];int len; int first[Maxn],n; void ins(int x,int y,int p)
{
t[++len].x=x;t[len].y=y;t[len].p=p;
t[len].next=first[x];first[x]=len;
} int mymax(int x,int y) {return x>y?x:y;}
int mymin(int x,int y) {return x<y?x:y;} bool init()
{
int x,y;
char c;
len=;
memset(first,,sizeof(first));
n=;
while()
{
scanf("%d",&x);getchar();
if(x==) break;
n=x;
while()
{
scanf("%d",&y);
n=mymax(n,y);
if(y==) {getchar();break;}
scanf("%c",&c);
if(c=='u'||c=='d')
{
if(c=='d') ins(x,y,),ins(y,x,-);
else ins(y,x,),ins(x,y,-);
scanf("%c",&c);
}
else {ins(x,y,);ins(y,x,);}
}
}
if(n==) return ;
return ;
} int f[Maxn],g[Maxn]; struct hp
{
int x,y;
}a[Maxn]; bool cmp(hp x,hp y) {return x.x<y.x;}
bool cmp2(hp x,hp y) {return x.y<y.y;} bool dp(int x,int fa,int now)
{
f[x]=g[x]=INF;
int mxf=-,mxg=-;
for(int i=first[x];i;i=t[i].next) if(t[i].y!=fa)
{
int y=t[i].y;
dp(y,x,now);
if(f[y]>=INF) return ;
}
int cnt=;
for(int i=first[x];i;i=t[i].next) if(t[i].y!=fa)
{
int y=t[i].y;
if(t[i].p==)
{
a[++cnt].x=f[y];
a[cnt].y=g[y];
}
else if(t[i].p==-) mxf=mymax(mxf,f[y]);
else mxg=mymax(mxg,g[y]);
}
if(cnt==)
{
if(mxf+mxg+<=now)
f[x]=mymin(f[x],mxf+),g[x]=mymin(g[x],mxg+);
}
else
{
sort(a+,a++cnt,cmp);
int pg=mxg;
for(int i=cnt;i>=;i--)
{
int nx=mymax(a[i].x,mxf);
if(nx+mxg+<=now) f[x]=nx+;
mxg=mymax(mxg,a[i].y);
}
// if(mxg+mxf<=now) f[x]=mxf+1;
sort(a+,a++cnt,cmp2);
mxg=pg;
for(int i=cnt;i>=;i--)
{
int nx=mymax(a[i].y,mxg);
if(nx+mxf+<=now) g[x]=nx+;
mxf=mymax(mxf,a[i].x);
}
// if(mxf+2<=now) g[x]=mxg+1;
}
return f[x]<INF;
} int ffind(int l,int r)
{
while(l<r)
{
int mid=(l+r)>>;
if(dp(,,mid)) r=mid;
else l=mid+;
}
printf("%d\n",l);
} int main()
{
a[].x=a[].y=-;
while()
{
bool z=init();
if(z==) break;
ffind(,n);
}
return ;
}

[UVA1380]

来一份GDXB的详细题解:

http://www.cnblogs.com/KonjakJuruo/p/5969831.html

balabalabala...

2016-10-17 20:26:08


  然而,事实上,因为n很小,有更简单的方法!!!n^3过了。。。

  dp[i][j]表示计算i这棵树,且i在第j天完成,的最短时间。

  dp[i][j]=max(dp[i][j],min(dp[y][k])) [y是i的孩子,k是y的可行时间]

 呵呵,100年打第一种方法,第二种方法秒A。呵呵~~

2016-10-17 21:00:06

【UVA 1380】 A Scheduling Problem (树形DP)的更多相关文章

  1. 【暑假】[深入动态规划]UVa 1380 A Scheduling Problem

     UVa 1380 A Scheduling Problem 题目: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=41557 ...

  2. UVA 1380 A Scheduling Problem

    题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem ...

  3. [HDU 5293]Tree chain problem(树形dp+树链剖分)

    [HDU 5293]Tree chain problem(树形dp+树链剖分) 题面 在一棵树中,给出若干条链和链的权值,求选取不相交的链使得权值和最大. 分析 考虑树形dp,dp[x]表示以x为子树 ...

  4. UVA 10253 Series-Parallel Networks (树形dp)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Series-Parallel Networks Input: standard ...

  5. HDU 5293 Annoying problem 树形dp dfs序 树状数组 lca

    Annoying problem 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5293 Description Coco has a tree, w ...

  6. HDU 5293 Tree chain problem 树形dp+dfs序+树状数组+LCA

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5293 题意: 给你一些链,每条链都有自己的价值,求不相交不重合的链能够组成的最大价值. 题解: 树形 ...

  7. hdu5293 Tree chain problem 树形dp+线段树

    题目:pid=5293">http://acm.hdu.edu.cn/showproblem.php?pid=5293 在一棵树中,给出若干条链和链的权值.求选取不相交的链使得权值和最 ...

  8. UVa 12186 - Another Crisis(树形DP)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  9. UVa 1218 - Perfect Service(树形DP)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

随机推荐

  1. c#的方法重写和的java方法重写有什么区别

    java code: package example; class m1 { public int getInt() { return 0; } } class m2 extends m1 { pub ...

  2. struts2拦截器的实现原理

    拦截器(interceptor)是Struts2最强大的特性之一,也可以说是struts2的核心,拦截器可以让你在Action和result被执行之前或之后进行一些处理.同时,拦截器也可以让你将通用的 ...

  3. 史上最全的JavaScript工作笔记

    /* * JavaScript查看对象函数 */ function resultTest( obj ){ var resultTest = ''; $.each(obj,function(key,va ...

  4. hbuilder用自己的服务

    2016-03-10 以后写测试demo用Sublime3 http://docs.emmet.io/cheat-sheet/ 更多炫酷信息和emmet语法请参见: 视频demo 语法文档 2016- ...

  5. String filePath = request.getSession().getServletContext().getRealPath("/");这句话返回的路径是什么,解释下getRealPath("/")函数中的"/"表示什么意思

    request.getSession().getServletContext() 获取的是Servlet容器对象,相当于tomcat容器了.getRealPath("/") 获取实 ...

  6. ios 阻止GDB依附

    GDB,IDE是大多数hackers的首选,阻止GDB依附到应用的常规办法是: . #import <sys/ptrace.h> . . int main(int argc, charch ...

  7. 安卓模拟器"bluestacks"在电脑上的设置.(宽,高)

    可以在手机上找到大量英语学习APP. 习惯使用电脑的朋友,可以安装模拟器来使用这些APP. bluestacks 是一款比较好的模拟器. 但其默认的宽,高,却无法在软件中修改. 找到一个比较好的教程来 ...

  8. Qt 操作Excel

    Qt对Excel的数据读/写操作没有现存的类,需要使用QAxObject,下面是从网上下载下来的一个封装好的类,感觉还可以,一般情况下够用,拿来给大家分享. 头文件: #ifndef EXCELENG ...

  9. HOW TO: Creating your MSI installer using Microsoft Visual Studio* 2008

    Quote from: http://software.intel.com/en-us/articles/how-to-creating-your-msi-installer-using-visual ...

  10. 选择第n小的元素之python实现源码

    def partition(A, p, r): j = p+1 for i in range(p+1, r+1): if(A[i] < A[p]): tmp = A[i] A[i] = A[j] ...