POJ_2385_Apple_Catching_(动态规划)
描述
http://poj.org/problem?id=2385
两棵苹果树,给定一个时间t,1~t每分钟有一棵树掉苹果,牛起始在#1树,最多换w次位置,问最多接到多少苹果.
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 10522 | Accepted: 5106 |
Description
Each minute, one of the two apple trees drops an apple. Bessie,
having much practice, can catch an apple if she is standing under a tree
from which one falls. While Bessie can walk between the two trees
quickly (in much less than a minute), she can stand under only one tree
at any time. Moreover, cows do not get a lot of exercise, so she is not
willing to walk back and forth between the trees endlessly (and thus
misses some apples).
Apples fall (one each minute) for T (1 <= T <= 1,000) minutes.
Bessie is willing to walk back and forth at most W (1 <= W <= 30)
times. Given which tree will drop an apple each minute, determine the
maximum number of apples which Bessie can catch. Bessie starts at tree
1.
Input
* Lines 2..T+1: 1 or 2: the tree that will drop an apple each minute.
Output
Sample Input
7 2
2
1
1
2
2
1
1
Sample Output
6
Hint
Seven apples fall - one from tree 2, then two in a row from tree 1,
then two in a row from tree 2, then two in a row from tree 1. Bessie is
willing to walk from one tree to the other twice.
OUTPUT DETAILS:
Bessie can catch six apples by staying under tree 1 until the first
two have dropped, then moving to tree 2 for the next two, then returning
back to tree 1 for the final two.
Source
分析
用f[i][j][k]表示第i分钟,已经移动了j次,在#k树下的最优解.
注意:
1.有些时候动规写成+的形式比-的形式方便
#include<cstdio>
#include<algorithm>
using std :: max; const int maxt=,maxw=;
int t,w;
int tree[maxt],f[maxt][maxw][]; inline int move(int x) { return x== ? : ; } void solve()
{
int ans=;
for(int i=;i<t;i++)
{
for(int j=;j<=w;j++)
{
for(int k=;k<=;k++)
{
if(k==tree[i+])
{
f[i+][j][k]=max(f[i+][j][k],f[i][j][k]+);
f[i+][j+][move(k)]=max(f[i+][j+][move(k)],f[i][j][k]);
}
else
{
f[i+][j][k]=max(f[i+][j][k],f[i][j][k]);
f[i+][j+][move(k)]=max(f[i+][j+][move(k)],f[i][j][k]+);
}
}
}
}
for(int i=;i<=t;i++)
{
for(int j=;j<=w;j++)
{
for(int k=;k<=;k++)
{
ans=max(ans,f[i][j][k]);
}
}
}
printf("%d\n",ans);
} void init()
{
scanf("%d%d",&t,&w);
for(int i=;i<=t;i++)
{
scanf("%d",tree+i);
}
if(tree[]==) f[][][]=;
else f[][][]=;
} int main()
{
#ifndef ONLINE_JUDGE
freopen("apple.in","r",stdin);
freopen("apple.out","w",stdout);
#endif
init();
solve();
#ifndef ONLINE_JUDGE
fclose(stdin);
fclose(stdout);
#endif
return ;
}
POJ_2385_Apple_Catching_(动态规划)的更多相关文章
- 增强学习(三)----- MDP的动态规划解法
上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...
- 简单动态规划-LeetCode198
题目:House Robber You are a professional robber planning to rob houses along a street. Each house has ...
- 动态规划 Dynamic Programming
March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...
- 动态规划之最长公共子序列(LCS)
转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...
- C#动态规划查找两个字符串最大子串
//动态规划查找两个字符串最大子串 public static string lcs(string word1, string word2) { ...
- C#递归、动态规划计算斐波那契数列
//递归 public static long recurFib(int num) { if (num < 2) ...
- 动态规划求最长公共子序列(Longest Common Subsequence, LCS)
1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...
- 【BZOJ1700】[Usaco2007 Jan]Problem Solving 解题 动态规划
[BZOJ1700][Usaco2007 Jan]Problem Solving 解题 Description 过去的日子里,农夫John的牛没有任何题目. 可是现在他们有题目,有很多的题目. 精确地 ...
- POJ 1163 The Triangle(简单动态规划)
http://poj.org/problem?id=1163 The Triangle Time Limit: 1000MS Memory Limit: 10000K Total Submissi ...
随机推荐
- linux x64下编译libjpeg,libpng,zlib
libJpeg编译: 下载libjpeg源码:http://www.ijg.org/,下载jpegsrc.v9a.tar.gz 解压源码,命令:tar -zxvf jpegsrc.v9a,源码文件夹为 ...
- JavaScript高级程序设计(五): js的关键字instanceof和typeof使用
JavaScript中instanceof和typeof 常用来判断一个变量是否为空,或者是什么类型的.但它们之间还是有区别的: 一.typeof 1.含义:typeof返回一个表达式的数据类型的字符 ...
- APP评价(星星点赞)很简单
1.用代码或者storyboard创建5个button(现在一般都是5个星星) 我用的是storyboard 记得一定要设置button的tag值 在.h中 @property (weak, nona ...
- objective-c ios webkit 本地存储local-storage
我有一个Cocoa / Objective-C的应用程序,它嵌入了一个WebKit的web视图.我需要打开的数据库支持和本地存储.我知道这是可以做到-我有它在Safari中工作-但我无法找到如何设置这 ...
- WCF入门及在WinForm中动态调用
一.WCF入门 1. 新建立空白解决方案,并在解决方案中新建项目,项目类型为:WCF服务应用程序,删除系统生成的两个文件IService1.cs与Service1.svc, 添加自定义的WCF[服务文 ...
- JS 浮点型数字运算(转)
示例: var num1=3.3; var num2=7.17; var ret=parseFloat(num1)+parseFloat(num2); //ret的值为:10.469999999999 ...
- 国庆第三天2014年10月3日10:21:39,Nutz,WebCollector,jsoup
(1)做得好,做得快,只能选择一样. (2)时间过得很快,你没法在假期的一天里完成更多的计划.假期全部由自己支配,相对长一点的睡眠,新加入的娱乐(视频或者游戏),你不比在工作中更有效率. (3)每天练 ...
- IDE开发<LER-Studio>(1)::UI设计
LER-Studio主要使用Microsoft Ribbon界面(fluentUI),大致为Office 2007 black. 首先创建MFC程序,基于多文档视图,Ribbon界面,基类选择CVie ...
- 【DP_树形DP专题】题单总结
转载自 http://blog.csdn.net/woshi250hua/article/details/7644959#t2 题单:http://vjudge.net/contest/123963# ...
- Linux 经典面试题
[Linux 经典面试题] 1. 在Linux系统中,以 文件 方式访问设备 . 2. Linux内核引导时,从文件 /etc/fstab 中读取要加载的文件系统. 3. Linux文件系统中每个文 ...