描述


http://poj.org/problem?id=2385

两棵苹果树,给定一个时间t,1~t每分钟有一棵树掉苹果,牛起始在#1树,最多换w次位置,问最多接到多少苹果.

Apple Catching
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 10522   Accepted: 5106

Description

It is a little known fact that cows love apples. Farmer John has two apple trees (which are conveniently numbered 1 and 2) in his field, each full of apples. Bessie cannot reach the apples when they are on the tree, so she must wait for them to fall. However, she must catch them in the air since the apples bruise when they hit the ground (and no one wants to eat bruised apples). Bessie is a quick eater, so an apple she does catch is eaten in just a few seconds.

Each minute, one of the two apple trees drops an apple. Bessie,
having much practice, can catch an apple if she is standing under a tree
from which one falls. While Bessie can walk between the two trees
quickly (in much less than a minute), she can stand under only one tree
at any time. Moreover, cows do not get a lot of exercise, so she is not
willing to walk back and forth between the trees endlessly (and thus
misses some apples).

Apples fall (one each minute) for T (1 <= T <= 1,000) minutes.
Bessie is willing to walk back and forth at most W (1 <= W <= 30)
times. Given which tree will drop an apple each minute, determine the
maximum number of apples which Bessie can catch. Bessie starts at tree
1.

Input

* Line 1: Two space separated integers: T and W

* Lines 2..T+1: 1 or 2: the tree that will drop an apple each minute.

Output

* Line 1: The maximum number of apples Bessie can catch without walking more than W times.

Sample Input

7 2
2
1
1
2
2
1
1

Sample Output

6

Hint

INPUT DETAILS:

Seven apples fall - one from tree 2, then two in a row from tree 1,
then two in a row from tree 2, then two in a row from tree 1. Bessie is
willing to walk from one tree to the other twice.

OUTPUT DETAILS:

Bessie can catch six apples by staying under tree 1 until the first
two have dropped, then moving to tree 2 for the next two, then returning
back to tree 1 for the final two.

Source

分析


用f[i][j][k]表示第i分钟,已经移动了j次,在#k树下的最优解.

注意:

1.有些时候动规写成+的形式比-的形式方便

 #include<cstdio>
#include<algorithm>
using std :: max; const int maxt=,maxw=;
int t,w;
int tree[maxt],f[maxt][maxw][]; inline int move(int x) { return x== ? : ; } void solve()
{
int ans=;
for(int i=;i<t;i++)
{
for(int j=;j<=w;j++)
{
for(int k=;k<=;k++)
{
if(k==tree[i+])
{
f[i+][j][k]=max(f[i+][j][k],f[i][j][k]+);
f[i+][j+][move(k)]=max(f[i+][j+][move(k)],f[i][j][k]);
}
else
{
f[i+][j][k]=max(f[i+][j][k],f[i][j][k]);
f[i+][j+][move(k)]=max(f[i+][j+][move(k)],f[i][j][k]+);
}
}
}
}
for(int i=;i<=t;i++)
{
for(int j=;j<=w;j++)
{
for(int k=;k<=;k++)
{
ans=max(ans,f[i][j][k]);
}
}
}
printf("%d\n",ans);
} void init()
{
scanf("%d%d",&t,&w);
for(int i=;i<=t;i++)
{
scanf("%d",tree+i);
}
if(tree[]==) f[][][]=;
else f[][][]=;
} int main()
{
#ifndef ONLINE_JUDGE
freopen("apple.in","r",stdin);
freopen("apple.out","w",stdout);
#endif
init();
solve();
#ifndef ONLINE_JUDGE
fclose(stdin);
fclose(stdout);
#endif
return ;
}

POJ_2385_Apple_Catching_(动态规划)的更多相关文章

  1. 增强学习(三)----- MDP的动态规划解法

    上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...

  2. 简单动态规划-LeetCode198

    题目:House Robber You are a professional robber planning to rob houses along a street. Each house has ...

  3. 动态规划 Dynamic Programming

    March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...

  4. 动态规划之最长公共子序列(LCS)

    转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...

  5. C#动态规划查找两个字符串最大子串

     //动态规划查找两个字符串最大子串         public static string lcs(string word1, string word2)         {            ...

  6. C#递归、动态规划计算斐波那契数列

    //递归         public static long recurFib(int num)         {             if (num < 2)              ...

  7. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  8. 【BZOJ1700】[Usaco2007 Jan]Problem Solving 解题 动态规划

    [BZOJ1700][Usaco2007 Jan]Problem Solving 解题 Description 过去的日子里,农夫John的牛没有任何题目. 可是现在他们有题目,有很多的题目. 精确地 ...

  9. POJ 1163 The Triangle(简单动态规划)

    http://poj.org/problem?id=1163 The Triangle Time Limit: 1000MS   Memory Limit: 10000K Total Submissi ...

随机推荐

  1. Python入门 学习笔记 (一)

    原文地址:http://www.cnblogs.com/lujianwenance/p/5939786.html 说到学习一门语言第一步就是先选定使用的工具(环境).因为本人是个小白,所以征求了一下同 ...

  2. javascript DOM操作 第19节

    <html> <head> <title>DOM对象</title> <script type="text/javascript&quo ...

  3. Ambiguous handler methods mapped for HTTP path

    一.问题:映射重复导致的错误 java代码如下: @RequestMapping(value = "/info/{remove}/{id}", method = RequestMe ...

  4. Cocos2d-x 3.0坐标系详解(转载)

    Cocos2d-x 3.0坐标系详解 Cocos2d-x坐标系和OpenGL坐标系相同,都是起源于笛卡尔坐标系. 笛卡尔坐标系 笛卡尔坐标系中定义右手系原点在左下角,x向右,y向上,z向外,OpenG ...

  5. Demo_张仕传_结构体考试-modify

    /* 题目: //声明一个结构体类型 struct _AdvTeacher { char *name; char *tile; int age; char *addr; char *p1; //系统预 ...

  6. Hdu 1452 Happy 2004(除数和函数,快速幂乘(模),乘法逆元)

    Problem Description Considera positive integer X,and let S be the sum of all positive integer diviso ...

  7. Iptables網路連線限制及攻擊防護和相關設定

    [筆記整理]Iptables網路連線限制及攻擊防護和相關設定 1. 限制每個IP連接HTTP最大併發50個連接數 iptables -A INPUT -p tcp --dport 80 -m conn ...

  8. 在hyper安装openwrt

    写了长长长一篇文章,结果把标签关了,这篇文章就不见了,草稿箱也没有!!! 只好直接copy原来作者的文章了 下载地址 openwrt image tulip driver 引用 Want to add ...

  9. java中运算符——进度1

    Class Demo1{    public static void main(String[] args) {        /*        一.逻辑运算法用于连接两个boolean类型的表达式 ...

  10. [转] 使用maven运行java main的三种方式

    原文地址: http://blog.csdn.net/qbg19881206/article/details/19850857?utm_source=tuicool&utm_medium=re ...