HDU5407.CRB and Candies(数论)
官方题解:
The problem is just to calculate g(N) = LCM(C(N,0),C(N,1),...,C(N,N))
Introducing function f(n) = LCM(1,2,...,n), the fact g(n) = f(n+1)/(n+1) holds.
We calculate f(n) in the following way.
f(1)=1
If n =p^k,then f(n) = f(n−1)× p, else f(n) = f(n−1).
Time complexity:O(N⋅logN)
这题用学的知识:
1。乘法逆元
求(a/b)%c时 化成 (a%c)/(b%c)是错误的,所以需要用到乘法逆元。(a%c)*(b^-1%c)。
b^-1的求法:
费马小定理(Fermat Theory): 假如p是质数,且Gcd(a,p)=1,那么 a^(p-1)(mod p)≡1。
由此可得a*a^(p-2)=1 (mod p) 即a^(p-2)就是a的乘法逆元。通过快速幂可求。
2。LCM(C(N,0),C(N,1),...,C(N,N))=LCM(1,2,...,n)/(n+1)
知乎上看到有人证明,并没有看懂。http://www.zhihu.com/question/34859879
3。求LCM(1,2,...,n)的简便算法
If n =p^k,then f(n) = f(n−1)× p, else f(n) = f(n−1).
代码:
#include <iostream>
#include <cstdio>
#include <cstring> typedef long long ll; const int N = 1000002;
const ll MOD = 1000000007; int v[N + 5];
ll f[N + 5];
int is_p[N + 5];
int p[N + 5];
int cnt_p; int n; void get_p()
{
for (int i = 0; i <= N; ++i) is_p[i] = 1;
cnt_p = 0;
is_p[0] = is_p[1] = 0;
for (int i = 2; i <= N; ++i) {
if (is_p[i]) {
p[cnt_p++] = i;
for (int j = i * 2; j <= N; j += i)
is_p[j] = 0;
}
}
} ll pow(ll a, ll b)
{
ll res = 1;
while (b > 0) {
if (b & 1) res = res * a % MOD;
a = a * a % MOD;
b >>= 1;
}
return res;
} ll MIM(ll a)
{
return pow(a, MOD-2);
} void get_f()
{
for (int i = 0; i < cnt_p; ++i) {
ll j = 1;
while (j < N) {
v[j] = p[i];
j *= p[i];
}
}
f[1] = 1;
for (int i = 2; i <= N; ++i) {
if (v[i]) f[i] = f[i - 1] * v[i] % MOD;
else f[i] = f[i - 1];
}
} int main()
{
get_p();
get_f(); int t;
scanf("%d", &t);
while (t--) {
scanf("%d", &n); printf("%lld\n", f[n + 1] * MIM(n + 1) % MOD);
} return 0;
}
HDU5407.CRB and Candies(数论)的更多相关文章
- HDU5407 CRB and Candies 【LCM递推】
HDU5407 CRB and Candies 题意: 计算\(LCM(C(n,0),C(n,1),C(n,2),\cdots,C(n,n-1),C(n,n))\) \(n\le 10^6\) 题解: ...
- ACM学习历程—HDU5407 CRB and Candies(数论)
Problem Description CRB has N different candies. He is going to eat K candies.He wonders how many co ...
- 【HDOJ 5407】 CRB and Candies (大犇推导
pid=5407">[HDOJ 5407] CRB and Candies 赛后看这题题解仅仅有满眼的迷茫------ g(N) = LCM(C(N,0),C(N,1),...,C(N ...
- HDU 5407——CRB and Candies——————【逆元+是素数次方的数+公式】
CRB and Candies Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)T ...
- CRB and Candies LCM 性质
题目 CRB and Candies 题意 \[ \text{给定正整数N,求} LCM \lbrace C \left(N , 0 \right),C\left(N , 1 \right),..., ...
- Hdu 5407 CRB and Candies (找规律)
题目链接: Hdu 5407 CRB and Candies 题目描述: 给出一个数n,求lcm(C(n,0),C[n,1],C[n-2]......C[n][n-2],C[n][n-1],C[n][ ...
- 2015 Multi-University Training Contest 10 hdu 5407 CRB and Candies
CRB and Candies Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)T ...
- 数论 HDOJ 5407 CRB and Candies
题目传送门 题意:求LCM (C(N,0),C(N,1),...,C(N,N)),LCM是最小公倍数的意思,C函数是组合数. 分析:先上出题人的解题报告 好吧,数论一点都不懂,只明白f (n + 1) ...
- CRB and Candies(组合数学+求逆元+lcm)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5407 题目: Problem Description CRB has N different cand ...
随机推荐
- 谈谈GUI的配色和字体选择
对于工控领域的显示屏,显示效果很难和电脑屏幕相比.电脑上操作系统或者各种软件的配色方案,在应用到工业控制屏上就会出现“完全不是所想要”的结果,所以工控领域GUI的色彩.字体的选择还是有特别的讲究. 配 ...
- Unity3d Shader开发(三)Pass(Alpha testing )
透明度测试是阻止像素被写到屏幕的最后机会. 在最终渲染出的颜色被计算出来之后,可选择通过将颜色的透明度值和一个固定值比较.如果比较的结果失败,像素将不会被写到显示输出中. Syntax 语法 Alph ...
- 【官方文档】《暗黑世界V1.4》API说明!
指令号说明 账号注册 100 { username str 用户名 password str 密码 } 返回信息 { result bool 指令调用是否成功 ...
- distinct 去重复查询——两个表join 连接,去掉重复的数据
------distinct 去重复查询 select * from accounts acc join (select distinct accid from roles) r on r.acci ...
- IntelliJ IDEA 中文乱码解决
显示乱码的主要原因,编辑器自带的字体里没有对中文的支持, 将字体换成有中文支持的即可,例如:为微软雅黑.宋体.... 字体转换位置 Ctrl+Alt+S > Appearance > ...
- Java使用socket实现两人聊天对话
import java.io.*; import java.net.ServerSocket; import java.net.Socket; import java.util.Scanner; /* ...
- Maven内置变量
1.Maven内置变量说明: ${basedir} 项目根目录 ${project.build.directory} 构建目录,缺省为target ${project.build.outputDire ...
- 保护模式下pmtest1.asm的理解
整个代码对应内存线性地址分为四段,[gdt] [code32] [video32] [code16] 代码先在实模式[code16]下运行,code16中的cs就是系统分配的该程序物理地址的基址. 编 ...
- easyui源码翻译1.32--Form(表单)
前言 使用$.fn.form.defaults重写默认值对象下载该插件翻译源码 form提供了各种方法来操作执行表单字段,比如:ajax提交, load, clear等等.当提交表单的时候可以调用va ...
- C++类中静态变量和静态方法使用介绍!
原链接:http://www.ecoviews.cn/net/archives/216.html 静态成员的提出是为了解决数据共享的问题.实现共享有许多方法,如:设置全局性的变量或对象是一种方法.但是 ...