官方题解:

The problem is just to calculate g(N) = LCM(C(N,0),C(N,1),...,C(N,N))

Introducing function f(n) = LCM(1,2,...,n), the fact g(n) = f(n+1)/(n+1) holds.

We calculate f(n) in the following way.

f(1)=1

If n =p^k,then f(n) = f(n−1)× p, else f(n) = f(n−1).

Time complexity:O(N⋅logN)

这题用学的知识:

1。乘法逆元

求(a/b)%c时 化成 (a%c)/(b%c)是错误的,所以需要用到乘法逆元。(a%c)*(b^-1%c)。

b^-1的求法:

费马小定理(Fermat Theory): 假如p是质数,且Gcd(a,p)=1,那么 a^(p-1)(mod p)≡1。

由此可得a*a^(p-2)=1 (mod p) 即a^(p-2)就是a的乘法逆元。通过快速幂可求。

2。LCM(C(N,0),C(N,1),...,C(N,N))=LCM(1,2,...,n)/(n+1)

知乎上看到有人证明,并没有看懂。http://www.zhihu.com/question/34859879

3。求LCM(1,2,...,n)的简便算法

If n =p^k,then f(n) = f(n−1)× p, else f(n) = f(n−1).

代码:

#include <iostream>
#include <cstdio>
#include <cstring> typedef long long ll; const int N = 1000002;
const ll MOD = 1000000007; int v[N + 5];
ll f[N + 5];
int is_p[N + 5];
int p[N + 5];
int cnt_p; int n; void get_p()
{
for (int i = 0; i <= N; ++i) is_p[i] = 1;
cnt_p = 0;
is_p[0] = is_p[1] = 0;
for (int i = 2; i <= N; ++i) {
if (is_p[i]) {
p[cnt_p++] = i;
for (int j = i * 2; j <= N; j += i)
is_p[j] = 0;
}
}
} ll pow(ll a, ll b)
{
ll res = 1;
while (b > 0) {
if (b & 1) res = res * a % MOD;
a = a * a % MOD;
b >>= 1;
}
return res;
} ll MIM(ll a)
{
return pow(a, MOD-2);
} void get_f()
{
for (int i = 0; i < cnt_p; ++i) {
ll j = 1;
while (j < N) {
v[j] = p[i];
j *= p[i];
}
}
f[1] = 1;
for (int i = 2; i <= N; ++i) {
if (v[i]) f[i] = f[i - 1] * v[i] % MOD;
else f[i] = f[i - 1];
}
} int main()
{
get_p();
get_f(); int t;
scanf("%d", &t);
while (t--) {
scanf("%d", &n); printf("%lld\n", f[n + 1] * MIM(n + 1) % MOD);
} return 0;
}

  

HDU5407.CRB and Candies(数论)的更多相关文章

  1. HDU5407 CRB and Candies 【LCM递推】

    HDU5407 CRB and Candies 题意: 计算\(LCM(C(n,0),C(n,1),C(n,2),\cdots,C(n,n-1),C(n,n))\) \(n\le 10^6\) 题解: ...

  2. ACM学习历程—HDU5407 CRB and Candies(数论)

    Problem Description CRB has N different candies. He is going to eat K candies.He wonders how many co ...

  3. 【HDOJ 5407】 CRB and Candies (大犇推导

    pid=5407">[HDOJ 5407] CRB and Candies 赛后看这题题解仅仅有满眼的迷茫------ g(N) = LCM(C(N,0),C(N,1),...,C(N ...

  4. HDU 5407——CRB and Candies——————【逆元+是素数次方的数+公式】

    CRB and Candies Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  5. CRB and Candies LCM 性质

    题目 CRB and Candies 题意 \[ \text{给定正整数N,求} LCM \lbrace C \left(N , 0 \right),C\left(N , 1 \right),..., ...

  6. Hdu 5407 CRB and Candies (找规律)

    题目链接: Hdu 5407 CRB and Candies 题目描述: 给出一个数n,求lcm(C(n,0),C[n,1],C[n-2]......C[n][n-2],C[n][n-1],C[n][ ...

  7. 2015 Multi-University Training Contest 10 hdu 5407 CRB and Candies

    CRB and Candies Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  8. 数论 HDOJ 5407 CRB and Candies

    题目传送门 题意:求LCM (C(N,0),C(N,1),...,C(N,N)),LCM是最小公倍数的意思,C函数是组合数. 分析:先上出题人的解题报告 好吧,数论一点都不懂,只明白f (n + 1) ...

  9. CRB and Candies(组合数学+求逆元+lcm)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5407 题目: Problem Description CRB has N different cand ...

随机推荐

  1. 谈谈GUI的配色和字体选择

    对于工控领域的显示屏,显示效果很难和电脑屏幕相比.电脑上操作系统或者各种软件的配色方案,在应用到工业控制屏上就会出现“完全不是所想要”的结果,所以工控领域GUI的色彩.字体的选择还是有特别的讲究. 配 ...

  2. Unity3d Shader开发(三)Pass(Alpha testing )

    透明度测试是阻止像素被写到屏幕的最后机会. 在最终渲染出的颜色被计算出来之后,可选择通过将颜色的透明度值和一个固定值比较.如果比较的结果失败,像素将不会被写到显示输出中. Syntax 语法 Alph ...

  3. 【官方文档】《暗黑世界V1.4》API说明!

    指令号说明 账号注册   100 { username   str     用户名 password   str     密码 } 返回信息 { result     bool    指令调用是否成功 ...

  4. distinct 去重复查询——两个表join 连接,去掉重复的数据

    ------distinct 去重复查询 select * from  accounts acc join (select distinct accid from roles) r on r.acci ...

  5. IntelliJ IDEA 中文乱码解决

    显示乱码的主要原因,编辑器自带的字体里没有对中文的支持, 将字体换成有中文支持的即可,例如:为微软雅黑.宋体.... 字体转换位置 Ctrl+Alt+S     > Appearance > ...

  6. Java使用socket实现两人聊天对话

    import java.io.*; import java.net.ServerSocket; import java.net.Socket; import java.util.Scanner; /* ...

  7. Maven内置变量

    1.Maven内置变量说明: ${basedir} 项目根目录 ${project.build.directory} 构建目录,缺省为target ${project.build.outputDire ...

  8. 保护模式下pmtest1.asm的理解

    整个代码对应内存线性地址分为四段,[gdt] [code32] [video32] [code16] 代码先在实模式[code16]下运行,code16中的cs就是系统分配的该程序物理地址的基址. 编 ...

  9. easyui源码翻译1.32--Form(表单)

    前言 使用$.fn.form.defaults重写默认值对象下载该插件翻译源码 form提供了各种方法来操作执行表单字段,比如:ajax提交, load, clear等等.当提交表单的时候可以调用va ...

  10. C++类中静态变量和静态方法使用介绍!

    原链接:http://www.ecoviews.cn/net/archives/216.html 静态成员的提出是为了解决数据共享的问题.实现共享有许多方法,如:设置全局性的变量或对象是一种方法.但是 ...