学习opencv 第六章 习题十三
用傅里叶变换加速卷积,直接上代码,Mat版是Copy他人的。
CvMat版
#include "stdafx.h"
#include "cv.h"
#include "highgui.h"
#include <iostream> using namespace cv;
using namespace std; void speedy_convolution(const CvMat* A,const CvMat* B,CvMat* C); int main()
{
IplImage* img=cvLoadImage("C:/Users/shark/Desktop/fruits.jpg",);
CvMat* src=cvCreateMat(img->height,img->width,CV_32FC1);
/*int data;
for(int i=0;i<img->height;i++)
{
for(int j=0;j<img->width;j++)
{
data=img->imageData[i*img->widthStep+j];
cvmSet(src,i,j,data);
}
}*/
//必须归一化矩阵的值为0-1之间(缩放比例在1/255.0附近效果最好,太小最后会全黑,接近1或大于1几乎是全白;
//(还未深入了解函数cvConvertScale的机理),缩放比例不能为1,打出目标图像的像素有正有负
cvConvertScale(img,src,/255.0,); CvMat* kernel=cvCreateMat(,,CV_32FC1);
cvSetReal2D(kernel,,,1.0/); cvSetReal2D(kernel,,,2.0/); cvSetReal2D(kernel,,,1.0/); //注意设置值时必须加个.0否则1/16的值0
cvSetReal2D(kernel,,,2.0/); cvSetReal2D(kernel,,,4.0/); cvSetReal2D(kernel,,,2.0/);
cvSetReal2D(kernel,,,1.0/); cvSetReal2D(kernel,,,2.0/); cvSetReal2D(kernel,,,1.0/);
CvMat* C=cvCreateMat((src->rows+kernel->rows-),(src->cols+kernel->cols-),src->type);
speedy_convolution(src,kernel,C); IplImage* img_src=cvCreateImage(cvGetSize(src),IPL_DEPTH_32F,);
cvGetImage(src,img_src);
IplImage* img_dst=cvCreateImage(cvGetSize(C),IPL_DEPTH_32F,);
cvGetImage(C,img_dst); cvNamedWindow("img_src");
cvShowImage("img_src",img_src);
cvNamedWindow("img");
cvShowImage("img",img);
cvNamedWindow("dst");
cvShowImage("dst",img_dst);
cvWaitKey();
return ;
} void speedy_convolution(
const CvMat* A,
const CvMat* B,
CvMat* C
){
int dft_M=cvGetOptimalDFTSize(A->rows+B->rows-);
int dft_N=cvGetOptimalDFTSize(A->cols+B->cols-); CvMat *dft_A=cvCreateMat(dft_M,dft_N,A->type);
CvMat *dft_B=cvCreateMat(dft_M,dft_N,B->type);
CvMat tmp;
cvGetSubRect(dft_A,&tmp,cvRect(,,A->cols,A->rows));
cvCopy(A,&tmp);
cvGetSubRect(dft_A,&tmp,cvRect(A->cols,,dft_A->cols-A->cols,A->rows));
cvZero(&tmp);
cvDFT(dft_A,dft_A,CV_DXT_FORWARD,A->rows); cvGetSubRect(dft_B,&tmp,cvRect(,,B->cols,B->rows));
cvCopy(B,&tmp);
cvGetSubRect(dft_B,&tmp,cvRect(B->cols,,dft_B->cols-B->cols,B->rows));
cvZero(&tmp);
cvDFT(dft_B,dft_B,CV_DXT_FORWARD,B->rows); cvMulSpectrums(dft_A,dft_B,dft_A,); cvDFT(dft_A,dft_A,CV_DXT_INV_SCALE,C->rows);
cvGetSubRect(dft_A,&tmp,cvRect(,,C->cols,C->rows));
cvCopy(&tmp,C);
cvReleaseMat(&dft_A);
cvReleaseMat(&dft_B);
}
Mat版
#include "opencv2/core/core.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <iostream> using namespace cv;
using namespace std; //http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#dft[2]
void convolveDFT(Mat A, Mat B, Mat& C)
{
// reallocate the output array if needed
C.create(abs(A.rows - B.rows)+, abs(A.cols - B.cols)+, A.type());
Size dftSize;
// calculate the size of DFT transform
dftSize.width = getOptimalDFTSize(A.cols + B.cols - );
dftSize.height = getOptimalDFTSize(A.rows + B.rows - ); // allocate temporary buffers and initialize them with 0's
Mat tempA(dftSize, A.type(), Scalar::all());
Mat tempB(dftSize, B.type(), Scalar::all()); // copy A and B to the top-left corners of tempA and tempB, respectively
Mat roiA(tempA, Rect(,,A.cols,A.rows));
A.copyTo(roiA);
Mat roiB(tempB, Rect(,,B.cols,B.rows));
B.copyTo(roiB); // now transform the padded A & B in-place;
// use "nonzeroRows" hint for faster processing
dft(tempA, tempA, , A.rows);
dft(tempB, tempB, , B.rows); // multiply the spectrums;
// the function handles packed spectrum representations well
mulSpectrums(tempA, tempB, tempA, DFT_COMPLEX_OUTPUT);
//mulSpectrums(tempA, tempB, tempA, DFT_REAL_OUTPUT); // transform the product back from the frequency domain.
// Even though all the result rows will be non-zero,
// you need only the first C.rows of them, and thus you
// pass nonzeroRows == C.rows
dft(tempA, tempA, DFT_INVERSE + DFT_SCALE, C.rows); // now copy the result back to C.
tempA(Rect(, , C.cols, C.rows)).copyTo(C); // all the temporary buffers will be deallocated automatically
} int main(int argc, char* argv[])
{
const char* filename = argc >= ? argv[] : "Lenna.png"; Mat I = imread(filename, CV_LOAD_IMAGE_GRAYSCALE);
if( I.empty())
return -; Mat kernel = (Mat_<float>(,) << , , , , , , , , );
cout << kernel; Mat floatI = Mat_<float>(I);// change image type into float
Mat filteredI;
convolveDFT(floatI, kernel, filteredI); normalize(filteredI, filteredI, , , CV_MINMAX); // Transform the matrix with float values into a
// viewable image form (float between values 0 and 1).
imshow("image", I);
imshow("filtered", filteredI);
waitKey(); } //一是输出Mat C应声明为引用;二是其中的mulSpectrums函数的第四个参数flag值没有指定,应指定为DFT_COMPLEX_OUTPUT或是DFT_REAL_OUTPUT. //main函数中首先按灰度图读入图像,然后创造一个平滑核kernel,将输入图像转换成float类型(注意这步是必须的,因为dft只能处理浮点数),在调用convolveDFT求出卷积结果后,将卷积结果归一化方便显示观看。 //需要注意的是,一般求法中,利用核游走整个图像进行卷积运算,实际上进行的是相关运算,真正意义上的卷积,应该首先把核翻转180度,再在整个图像上进行游走。OpenCV中的filter2D实际上做的也只是相关,而非卷积。
学习opencv 第六章 习题十三的更多相关文章
- JVM学习笔记-第六章-类文件结构
JVM学习笔记-第六章-类文件结构 6.3 Class类文件的结构 本章中,笔者只是通俗地将任意一个有效的类或接口锁应当满足的格式称为"Class文件格式",实际上它完全不需要以磁 ...
- C Primer Plus 学习笔记 -- 前六章
记录自己学习C Primer Plus的学习笔记 第一章 C语言高效在于C语言通常是汇编语言才具有的微调控能力设计的一系列内部指令 C不是面向对象编程 编译器把源代码转化成中间代码,链接器把中间代码和 ...
- 【学习opencv第六篇】图像的反转操作
考试终于完了,现在终于有时间可以继续学习这个了.写这篇博客主要是因为以前一直搞不清楚图像数据到底是怎么存储的,以及这个step到底是什么,后来查了一下才知道原来step就是数据行的长度.. #incl ...
- 《mysql必知必会》学习_第六章_20180730_欢
第六章<过滤数据> P35 1. select prod_name,prod_price from products where prod_price=2.5; 2.select prod ...
- Linux学习笔记(第六章)
第六章-档案权限与目录配置#chgrp:改变档案的所属群组#chown:改变档案的拥有者#chmod:改变档案的权限及属性 chown用法 chmod用法: r:4 w:2 x:1对于文档: 对于目录 ...
- C++ Primer Plus学习:第六章
C++入门第六章:分支语句和逻辑运算符 if语句 语法: if (test-condition) statement if else语句 if (test-condition) statement1 ...
- o'Reill的SVG精髓(第二版)学习笔记——第六章
第六章:坐标系统变换 想要旋转.缩放或者移动图片到新的位置.可以给对应的SVG元素添加transform属性. 6.1 translate变换 可以为<use>元素使用x和y属性,以在特性 ...
- 学习笔记 第六章 使用CSS美化图片
第六章 使用CSS美化图片 6.1 在网页中插入图片 GIF图像 跨平台能力,无兼容性问题: 具有减少颜色显示数目而极度压缩文件的能力,不会降低图像的品质(无损压缩): 支持背景透明功能,便于图像 ...
- Perl语言入门:第六章习题:处理用户所指定的名字并汇报相应的姓。
37 print "\n----------------------------------_exercise_6_1--------------------------\n"; ...
随机推荐
- VirtualBox的usb支持
解决usb支持: 0. 下载Oracle_VM_VirtualBox_Extension_Pack-4.0.4-70112.vbox-extpack后双击即可采用VB安装,若还是用ark打开可人为设置 ...
- Winform Windows Media Player 简易播放器 分类: WinForm 2014-07-31 20:12 589人阅读 评论(0) 收藏
新手上路,高手勿进! 窗体设计: 实现效果: 实现代码: using System; using System.Collections.Generic; using System.ComponentM ...
- 接口作为参数,不同的接口调用不同的方法,例如:输出“I love Game”或输出“我喜欢游戏”
接口的思想:在于可以增加很多类都需要实现的功能.比如:各式各样的商品,可能隶属不同公司,但工商部门都必须具有显示商标的功能(实现同一接口).商标的具体制作由各个公司自己去实现. 给其他类去实现,不同的 ...
- DataTable无法使用AsEnumerable ()的解决办法
本人定义了DataSet后将表1赋给datatable,在写linq时调用datatable.asenumerable(),但报datatable不包含asenumerable的定义,求高手指点.Sy ...
- Android 举例说明自己的定义Camera图片和预览,以及前后摄像头切换
如何调用本地图片,并调用系统拍摄的图像上一博文解释(http://blog.csdn.net/a123demi/article/details/40003695)的功能. 而本博文将通过实例实现自己定 ...
- String是java中的基本数据类型吗
1. 首先String不属于8种基本数据类型,String是一个对象. 因为对象的默认值是null,所以String的默认值也是null:但它又是一种特殊的对象,有其它对象没有的一些特性. 2. Ja ...
- max_connections 与 max_used_connections --ERROR 1040: Too many connections
mysql> show variables like 'max_connections'; +-----------------+-------+ | Variable_name | Value ...
- xml写代码
#include <QDomDocument> #include <QtGui> int main(int argc, char *argv[]) { QApplication ...
- Service 如何知道caller
重写Binder的onTransact方法 1 you need to do that in Binder#onTransact method, this is a good place for ...
- Linux chmod
在Linux中要修改一个文件夹或文件的权限我们需要用到linux chmod命令来做. 语法如下: chmod [who] [+ | - | =] [mode] 文件名 命令中各选项的含义为 u 表示 ...