LDR/STR字和无符号字节加载/存储 1,LDR Rd,[Rn]   2, LDR Rd,[Rn,Flexoffset] 3, LDR Rd,[Rn],Flexoffset 4, LDR Rd,label ldr只能在当前PC的4KB范围内跳转 B只能在当前PC的32M范围内跳转 label标号实际上就是个地址 eg:

合法:

ldr r1,[r2] ldr r1,[r2,#0x4];不能超过0xfff,否侧编译不能通过或者linker时有错 ldr r1,[r2,#label];所以这个经常是编译不能通过,因为label的值一般都大于0xfff ldr r1,[r2],#0x4 ldr r1,label ;把label这个地址里面的内容赋给r1 ldr伪指令 ldr r1,=0x2000014 ;将0x2000014付给r1. ldr r1,=label ;把label这个地址值赋给r1

不合法: ldr r1,#0x14 ldr r1,[#0x14] ldr r1,[0x14] ldr r1,#label ldr r1,=#label ldr r1,[label] ldr r1,[#label] ldr r1,[=label] ldr r1,[r2,label] ldr r1,[r2,=label]

ARM是RISC结构,数据从内存到CPU之间的移动只能通过L/S指令来完成,也就是ldr/str指令。 比如想把数据从内存中某处读取到寄存器中,只能使用ldr 比如: ldr r0, 0x12345678 就是把0x12345678这个地址中的值存放到r0中。 而mov不能干这个活,mov只能在寄存器之间移动数据,或者把立即数移动到寄存器中,这个和x86这种CISC架构的芯片区别最大的地方。 x86中没有ldr这种指令,因为x86的mov指令可以将数据从内存中移动到寄存器中。
另外还有一个就是ldr伪指令,虽然ldr伪指令和ARM的ldr指令很像,但是作用不太一样。ldr伪指令可以在立即数前加上=,以表示把一个地址写到某寄存器中,比如: ldr r0, =0x12345678 这样,就把0x12345678这个地址写到r0中了。所以,ldr伪指令和mov是比较相似的。只不过mov指令限制了立即数的长度为8位,也就是不能超过512。而ldr伪指令没有这个限制。如果使用ldr伪指令时,后面跟的立即数没有超过8位,那么在实际汇编的时候该ldr伪指令是被转换为mov指令的。

ldr的确是个复杂的指令,现总结一下:     首先要判断我们用的ldr 是arm指令还是伪指令。 当我们用的是arm指令时,它的作用不是向寄存器里加载立即数,而是将某个地址里的内容加载到寄存器。而伪指令ldr的作用就是向寄存器里加载立即数。     (1) ldr伪指令     ldr伪指令的格式是 ldr Rn, =expr     其中,expr是要加载到Rn中的内容,一般可以是立即数或者label。     如果expr可以用8bit数据向右移偶数位得到,那么这条伪指令就被编译器翻译成mov指令。具体的移位情况可以去查阅资料。反之如果立即数很大,超过了12bit的表示范畴,那么就不能用一条mov指令了,毕竟arm指令最大只有32bit的空间可用(RISC的arm所有的指令长度是一致的,效率较高,当然我们并不关心16bit的thumb指令)。如果不能用一条32bit的指令乘下来,那么就只能另辟蹊径了,新开一段缓冲,将立即数expr放到里面,然后将其地址(暂时标记为addr)拿来使用:     ldr Rn, addr     xxx (xxx就是expr)     xxx

由于编译器一般来说新安排的存储这个立即数expr的缓冲的位置是在相应代码的附近(这个应该可以使用.ltorg伪指令控制),然后从addr地址加载数据到Rn,就可以了。

(2)ldr arm 指令     就是将一个地址的内容加载到寄存器。不能用mov,因为arm里的mov只是在寄存器之间传输数据,不支持在寄出器和memory之间传递数据。因此就出现了ldr/str指令。如ldr Rn, addr,注意这里的addr的值也是有限制的。这个label应该距离当前指令的距离不超过4k。因为我们知道label在具体使用的时候应该是被翻译成了相对偏移,如果这个label长度不超过12bit,那么就不应超过4k,我们可以这样做: ldr pc, _start_armboot _start_armboot: .word arm_startboot 这样label _start_armboot就在指令下方,因此肯定是合法的。

ldr指令总结的更多相关文章

  1. LDR指令的格式:

    http://blog.csdn.net/tanyouliang/article/details/6767011 LDR指令的格式: LDR{条件}   目的寄存器     <存储器地址> ...

  2. uboot之ldr指令

    刚开始接触uboot的时候,就一直对ldr指令很迷惑,因为这个指令有两层用法,一个是加载,一个是伪指令.今天闲着没事就来说一下这两个之间的区别. LDR伪指令的形式是"LDR Rn,=exp ...

  3. ARM汇编中ldr伪指令和ldr指令(转载)

    转自:http://blog.csdn.net/ce123_zhouwei/article/details/7182756 ARM是RISC结构,数据从内存到CPU之间的移动只能通过L/S指令来完成, ...

  4. 详解汇编语言B和LDR指令与相对跳转和绝对跳转的关系

    @ 目录 为什么要有相对跳转和绝对跳转? 在程序中只有相对跳转/绝对跳转是否可以? B(BL)和LDR指令具体怎么执行的? B(BL)和LDR跳转范围是如何规定的? 为什么要有相对跳转和绝对跳转? 顺 ...

  5. arm ldr 指令

    ldr 指令格式:(读取概念) ldr{条件} 1目的寄存器,2存储器地址 eg: ldr r0,[r1]; 把r1中数据值读取到r0中: ldr r0,[r1,r2];把r1+r2的数值 读取到r0 ...

  6. arm中的ldr指令

    label .equ 0x53000000 ldr r0, label : 将0x53000000地址处的值放入r0中 ldr r0, =label : 将0x53000000付值给r0.

  7. LDR、STR指令

    LDR(load register)指令将内存内容加载入通用寄存器 STR(store register)指令将寄存器内容存入内存空间中 #define GPJ0CON 0xE0200240 _sta ...

  8. ARMv7 ldr/str指令详解

    因为ARM的算术运算不支持直接操作内存地址,所以要把内存里的数据先加载进寄存器.ldr指令就是干这事的,称为间接取址模式. 一共有3*3九种模式,先是直接偏移,先偏移,后偏移三大类,指的是如何对源操作 ...

  9. ARM7ldr指令与ldr伪指令

    ldr伪指令的第二个操作数之前有个=,意思是第一个操作书 = 第二个操作数,相当明了 核心就在于对于用.word指令在.text段里另外定义一段内存,用ldr r0,[pc + x(可以算出.text ...

随机推荐

  1. 无刷新删除 Ajax,JQuery

    1.数据库用上面的,增加一个 DeleteById 的SQL方法 delete from T_Posts where Id = @Original_Id 2.设置处理页面 delete.ashx pu ...

  2. linux ptheard 生产者消费者

    ;     {           {          printf(         pthread_mutex_lock(&mutex);            != g_iBufSiz ...

  3. less学习-浏览器端编译(一)

    demo地址 http://www.qq210.com/shoutu/android 1.下载less包,官网 2.引入less文件 <link rel="stylesheet/les ...

  4. poco异步等待ActiveResult

    #include "Poco/ActiveMethod.h"#include "Poco/ActiveResult.h"#include <utility ...

  5. JNI/NDK开发指南(一)—— JNI开发流程及HelloWorld

    转载请注明出处:http://blog.csdn.net/xyang81/article/details/41777471 JNI全称是Java Native Interface(Java本地接口)单 ...

  6. ORACLE 常用系统函数

    1.  字符类 1.1  ASCII(c ) 函数  和CHR( i )      ASCII 返回一个字符的ASCii码,其中c表示一个字符;CHR 返回ascii码值i 所对应的字符 . 如: S ...

  7. bzoj 1195: [HNOI2006]最短母串 爆搜

    1195: [HNOI2006]最短母串 Time Limit: 10 Sec  Memory Limit: 32 MBSubmit: 894  Solved: 288[Submit][Status] ...

  8. DEEP LEARNING IS THE FUTURE: Q&A WITH NAVEEN RAO OF NERVANA SYSTEMS

    DEEP LEARNING IS THE FUTURE: Q&A WITH NAVEEN RAO OF NERVANA SYSTEMS CME Group was one of several ...

  9. Cloud Test 在手,宕机时让您不再措手不及

    1月28日,Github 上午 10:04 分宕机了,导致全球各地的用户不能访问.官方回复可能是网络中断引起的,到 10:28 分已经可以正常访问. 对于互联网公司来说,一旦宕机就会措手不及,如何才能 ...

  10. 【UVAlive 3989】 Ladies' Choice (稳定婚姻问题)

    Ladies' Choice Teenagers from the local high school have asked you to help them with the organizatio ...