Bridging signals

Description

'Oh no, they've done it again', cries the chief designer at the Waferland chip factory. Once more the routing designers have screwed up completely, making the signals on the chip connecting the ports of two functional blocks cross each other all over the place. At this late stage of the process, it is too expensive to redo the routing. Instead, the engineers have to bridge the signals, using the third dimension, so that no two signals cross. However, bridging is a complicated operation, and thus it is desirable to bridge as few signals as possible. The call for a computer program that finds the maximum number of signals which may be connected on the silicon surface without crossing each other, is imminent. Bearing in mind that there may be thousands of signal ports at the boundary of a functional block, the problem asks quite a lot of the programmer. Are you up to the task? 

A typical situation is schematically depicted in figure 1. The ports of the two functional blocks are numbered from 1 to p, from top to bottom. The signal mapping is described by a permutation of the numbers 1 to p in the form of a list of p unique numbers in the range 1 to p, in which the i:th number specifies which port on the right side should be connected to the i:th port on the left side.Two signals cross if and only if the straight lines connecting the two ports of each pair do.

Input

On the first line of the input, there is a single positive integer n, telling the number of test scenarios to follow. Each test scenario begins with a line containing a single positive integer p < 40000, the number of ports on the two functional blocks. Then follow p lines, describing the signal mapping:On the i:th line is the port number of the block on the right side which should be connected to the i:th port of the block on the left side.

Output

For each test scenario, output one line containing the maximum number of signals which may be routed on the silicon surface without crossing each other.

Sample Input

4
6
4
2
6
3
1
5
10
2
3
4
5
6
7
8
9
10
1
8
8
7
6
5
4
3
2
1
9
5
8
9
2
3
1
7
4
6

Sample Output

3
9
1
4 题目大意:求最长上升子序列,序列长度最大为40000。 分析:如果用一般的LIS算法,时间复杂度高达n^2。这里引用《入门经典》复杂度为O(nlogn)的方法。
  假设已经计算出的两个状态 a 和 b 满足Aa < Bb 且d(a)==d(b),则对于后续所有状态 i(即i>a且i>b)来说,a并不会比b差——如果b满足Ab < Ai的条件,a也满足,且二者的d值相同;但反过来却不一定了。换句话说,如果我们只保留a,一定不会丢失最优解。
  这样,对于相同的d值,只需要保留A最小的一个。我们用g(i)表示d值为i的最小状态编号。根据上述推理证明
  g(1)<=g(2)<=g(3)<=...<=g(n)
  上述的g值是动态改变的。对于一个给定的状态i,我们只考虑在i之前已经计算过的状态j(即j<i)。在给定状态i时可以用二分查找得到满足g(k)>=Ai的第一个下标k,则d(i)=k,此时Ai<g(k),而d(i)=k,所以更新g(k)=Ai。(话说看的不是很明白)
 for(i=1; i<=n; i++) g[i] = INF;
for(i=0; i<n; i++)
{
int k = lower_bound(g+1,g+n+1,A[i]) - g;
      d[i]=k;
g[k] = A[i];
}
代码如下:
 # include<cstdio>
# include<iostream>
# include<algorithm>
using namespace std;
# define INF 0xffffff
int n;
int g[],A[]; int main()
{
int i,T;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(i=; i<n; i++)
scanf("%d",&A[i]);
int ans = ;
for(i=; i<=n; i++) g[i] = INF;
for(i=; i<n; i++)
{
int k = lower_bound(g+,g+n+,A[i]) - g;
g[k] = A[i];
if(k>ans)
ans = k;
}
printf("%d\n",ans);
}
return ;
}
LIS nlogn算法大罗列!
网上有这一方面的总结 //n是原序列长度,a[]是原序列,D是a[]的值域大小

1. f[i]表示a[i]结尾的LIS长度,f[i] = max{f[j]}+1 : a[j]<a[i]

1.1 维护一个以a的值为下标,以f的值为值的树状数组优化转移。O(n log D)

1.2 g[x]表示长度为x的所有LIS中最小的末尾的值,可证g[x]单调递增,二分查找转移。O(n log n)

1.3 维护一个“最优”的LIS q,每次将q关于a[i]的lower_bound更新为a[i],同时转移。O(n log n)

1.2代码如下:
 #include <iostream>
using namespace std; int a[];
int dp[];
int b[], blen;
int n; int main() {
int ca,i;
scanf("%d", &ca);
while (ca--) {
scanf("%d", &n);
for (i = ; i <= n; ++i) {
scanf("%d", a+i);
}
memset(b,,sizeof(b));
memset(dp,,sizeof(dp)); int left, right, mid;
blen = ;
int res = ;
for (i = ; i <= n; ++i) {
left = ;
right = blen;
int num = a[i];
while (left <= right) {
mid = (left + right)/;
if (b[mid] < a[i]) {
left = mid + ;
}
else {
right = mid - ;
}
}
dp[i] = left;
b[left] = a[i];
if (blen < left)
blen = left;
if (res < dp[i])
res = dp[i];
}
printf("%d\n", res);
}
return ;
}

 
												

POJ 1631 Bridging signals(LIS O(nlogn)算法)的更多相关文章

  1. POJ 1631 Bridging signals (LIS:最长上升子序列)

    题意:给你一个长为n(n<=40000)的整数序列, 要你求出该序列的最长上升子序列LIS. 思路:要求(nlogn)解法 令g[i]==x表示当前遍历到的长度为i的所有最长上升子序列中的最小序 ...

  2. POJ 1631 Bridging signals(LIS 二分法 高速方法)

    Language: Default Bridging signals Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 1076 ...

  3. OpenJudge/Poj 1631 Bridging signals

    1.链接地址: http://poj.org/problem?id=1631 http://bailian.openjudge.cn/practice/1631 2.题目: Bridging sign ...

  4. POJ 1631 Bridging signals

    Bridging signals Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9441   Accepted: 5166 ...

  5. poj 1631 Bridging signals (二分||DP||最长递增子序列)

    Bridging signals Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9234   Accepted: 5037 ...

  6. POJ 1631 Bridging signals(LIS的等价表述)

    把左边固定,看右边,要求线不相交,编号满足单调性,其实是LIS的等价表述. (如果编号是乱的也可以把它有序化就像Uva 10635 Prince and Princess那样 O(nlogn) #in ...

  7. Poj 1631 Bridging signals(二分+DP 解 LIS)

    题意:题目很难懂,题意很简单,求最长递增子序列LIS. 分析:本题的最大数据40000,多个case.用基础的O(N^2)动态规划求解是超时,采用O(n*log2n)的二分查找加速的改进型DP后AC了 ...

  8. POJ - 1631 Bridging signals(最长上升子序列---LIS)

    题意:左右各n个端口,已知n组线路,要求切除最少的线路,使剩下的线路各不相交,按照左端口递增的顺序输入. 分析: 1.设左端口为l,右端口为r,因为左端口递增输入,l[i] < l[j](i & ...

  9. POJ 1631 Bridging signals & 2533 Longest Ordered Subsequence

    两个都是最长上升子序列,所以就放一起了 1631 因为长度为40000,所以要用O(nlogn)的算法,其实就是另用一个数组c来存储当前最长子序列每一位的最小值,然后二分查找当前值在其中的位置:如果当 ...

随机推荐

  1. JavaScript高级程序设计46.pdf

    鼠标按钮 只有在主鼠标按钮被单击(或键盘回车键被按下)是才会触发click事件,对于mousedown和mouseup事件,其event对象存在一个button属性,表示按下或者释放按钮.DOM的bu ...

  2. .net常見面試題(四)

    1. .Net.C#.VisualStudio之间的关系是什么? .Net一般指的是.Net Framework,提供了基础的.Net类,这些类可以被任何一种.Net编程语言调用,.Net Frame ...

  3. usaco 奶牛集会 && 奶牛抗议

    奶牛集会 Description 约翰家的N头奶牛每年都会参加“哞哞大会” .哞哞大会是世界奶牛界的盛事.集会上 的活动很多,比如堆干草,跨栅栏,摸牛仔的屁股等等.当然,哞哞大叫肯定也包括在内. 奶牛 ...

  4. __attribute__机制介绍 (转)

    1. __attribute__ GNU C的一大特色(却不被初学者所知)就是__attribute__机制. __attribute__可以设置函数属性(Function Attribute).变量 ...

  5. Altium Designer6打印PCB 设置

    1.File-->Page Setup     Printer Paper一栏是打印纸的设置,不再罗嗦.     主要是Scaling一栏:ScaleMode项选择:ScaledPrint    ...

  6. php 生成mysql数据字典代码

    由于项目开发用了比较多的表 ,为了快速获取数据字典,通过php代码的方式来获取表结构和表注释.代码如下: <?php /** * 生成mysql数据字典 */ header ( "Co ...

  7. jetty之安装,配置,部署,运行

    上篇文章中详解了关于什么是jetty,后续文章主要是介绍jetty的使用.本章介绍jetty环境的配置及部署war包. 1. 安装 1. 先下载一个jetty的压缩包,下载地址:http://www. ...

  8. android实习程序7——通话记录显示

    下载SQLiteSpy.exe 打开模拟器5554 打开perspective,选择DDMS 打开Devices,确认存在emulator-5554 打开file Explorer 打开data文件夹 ...

  9. Socket程序中的Error#10054错误

    近期使用winSock做的一个网络项目中,使用TCP+Socket连接编写的一个多线程的网络程序,功能是client负责不断地向server端发送数据,服务端负责接收数据.client是一个DLL,服 ...

  10. 用Gitosis搭建Git服务器(经典资料)

    该文档介绍了用Gitosis自己搭建Git服务器,文章来自于<Git权威指南>一书的第31章,讲述详细易懂易操作,是搭建Git服务器绝好资料! 下载地址:http://download.c ...