BZOJ 1049 数字序列
Description
现在我们有一个长度为n的整数序列A。但是它太不好看了,于是我们希望把它变成一个单调严格上升的序列。但是不希望改变过多的数,也不希望改变的幅度太大。
Input
第一行包含一个数n,接下来n个整数按顺序描述每一项的键值。
Output
第一行一个整数表示最少需要改变多少个数。 第二行一个整数,表示在改变的数最少的情况下,每个数改变的绝对值之和的最小值。
Sample Input
5 2 3 5
Sample Output
4
HINT
【数据范围】
90%的数据n<=6000。
100%的数据n<=35000。
保证所有数列是随机的。
Source
这道题感觉太神了。
令原数组为a。
对于第一问我们可以反过来思考——要求最少的改动的,不就是求最多的不改动的吗?
f[i]表示前i位最多的不改动的数字个数,f[i]=max(f[j]+1),j需要满足a[i]-a[j]≥i-j。对于条件,我们移一下项,化为a[i]-i≥a[j]-j,令b[i]=a[i]-i,不就是b[i]≥b[j]。细心的朋友一定看出来了,这不就是最长不下降子序列吗!!!O(nlogn)的求法上起。
第二问稍微麻烦一点,我们要知道一个结论:另g[i]表示前i个数,在改动数最少的前提下,最少改动的值。
那么对于所有合法的转移i,j(i>j,f[i]=f[j]+1,b[i]≥b[j]),最优解一定是在i与j之间某个k,k到j的值全为b[j],k+1到i的值全为b[i]。因此就可以dp了。证明自己脑补一下就可以了。。。(自己画画图,根据条件想想应该是可以明白的)
#include<cstring>
#include<vector>
#include<algorithm>
#include<iostream>
#include<cstdio>
#include<cstdlib>
using namespace std; #define inf (1<<30)
#define maxn 35010
int tree[maxn],tot,n,f[maxn],a[maxn],bac[maxn];
long long g[maxn],s1[maxn],s2[maxn];
vector <int> vec[maxn]; inline int lowbit(int x) { return x & -x; } inline void change(int a,int b) { for (;a <= tot;a += lowbit(a)) tree[a] = max(tree[a],b); } inline int calc(int a) { int ret = ; for (;a;a -= lowbit(a)) ret = max(ret,tree[a]); return ret; } int main()
{
freopen("1049.in","r",stdin);
freopen("1049.out","w",stdout);
scanf("%d",&n);
for (int i = ;i <= n;++i) scanf("%d",a+i),a[i] -= i,bac[++tot] = a[i];
a[++n] = inf; bac[++tot] = a[n];
sort(bac+,bac+tot+); tot = unique(bac+,bac+tot+) - bac - ;
for (int i = ;i <= n;++i)
{
int pos = lower_bound(bac+,bac+tot+,a[i]) - bac;
f[i] = calc(pos) + ;
change(pos,f[i]);
}
printf("%d\n",n-f[n]);
for (int i = ;i <= n;++i) vec[f[i]].push_back(i);
a[] = -inf;
memset(g,0x7,sizeof(g)); g[] = ;
for (int i = ;i <= n;++i)
{
int nn = vec[f[i] - ].size();
for (int p = ;p < nn;++p)
{
int j = vec[f[i]-][p];
if (j >= i) break; if (a[i] < a[j]) continue;
for (int k = j;k <= i;++k) s1[k]=abs(a[k]-a[j]),s2[k]=abs(a[k]-a[i]);
for (int k = j+;k <= i;++k) s1[k] += s1[k-],s2[k] += s2[k-];
for (int k = j;k < i;++k) g[i] = min(g[i],g[j]+s1[k]-s1[j]+s2[i]-s2[k]);
}
}
printf("%lld",g[n]);
fclose(stdin); fclose(stdout);
return ;
}
BZOJ 1049 数字序列的更多相关文章
- BZOJ 1049 数字序列(LIS)
题目链接:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1049 题意:给出一个数列A,要求:(1)修改最少的数字使得数列严格递增:(2)在( ...
- bzoj 1049: 数字序列 dp
题目大意: 给定一个长度为n的整数序列.在改变的数最小的和改变的幅度最小的前提下把它变成一个单调严格上升的序列.求改变的最小的数和这个幅度. 题解: (貌似以前考试考过这道题) 其实这道题就是两道题拼 ...
- 【BZOJ】【1049】【HAOI2006】数字序列
DP 第一问比较水……a[i]-=i 以后就变成最长不下降子序列问题了,第二问这个结论好神奇,考试的时候怎么破?大胆猜想,不用证明?TAT 题解:http://pan.baidu.com/share/ ...
- 【BZOJ 1049】 1049: [HAOI2006]数字序列 (LIS+动态规划)
1049: [HAOI2006]数字序列 Description 现在我们有一个长度为n的整数序列A.但是它太不好看了,于是我们希望把它变成一个单调严格上升的序列.但是不希望改变过多的数,也不希望改变 ...
- bzoj 1049 [HAOI2006]数字序列
[bzoj1049][HAOI2006]数字序列 Description 现在我们有一个长度为n的整数序列A.但是它太不好看了,于是我们希望把它变成一个单调严格上升的序列.但是不希望改变过多的数,也不 ...
- 找出数组中最长的连续数字序列(JavaScript实现)
原始题目: 给定一个无序的整数序列, 找最长的连续数字序列. 例如: 给定[100, 4, 200, 1, 3, 2], 最长的连续数字序列是[1, 2, 3, 4]. 小菜给出的解法: functi ...
- 九度OJ 1544 数字序列区间最小值
题目地址:http://ac.jobdu.com/problem.php?pid=1544 题目描述: 给定一个数字序列,查询任意给定区间内数字的最小值. 输入: 输入包含多组测试用例,每组测试用例的 ...
- kaggle之数字序列预测
数字序列预测 Github地址 Kaggle地址 # -*- coding: UTF-8 -*- %matplotlib inline import pandas as pd import strin ...
- string 数字序列大小比较
string 数字序列大小比较 string.compare string a = "022"; string b="1"; 比较结果 '022' < ' ...
随机推荐
- 基于JAX-WS的Web Service服务端/客户端 ;JAX-WS + Spring 开发webservice
一.基于JAX-WS的Web Service服务端/客户端 下面描述的是在main函数中使用JAX-WS的Web Service的方法,不是在web工程里访问,在web工程里访问,参加第二节. JAX ...
- (使用步骤)ThinkPHP3.1.2中如何配置Ckeditor_4.1.1和Ckfindtor(转)
ThinkPHP3.1.2中如何配置Ckeditor_4.1.1和Ckfindtor 一.下载Ckeditor和Ckfinder Ckeditor官网 http://ckeditor.com/dow ...
- etrace跟踪Nginx代码+ FASTCGI
http://blog.csdn.net/jianqiangchen/article/details/29175285 http://blog.csdn.net/jianqiangchen/artic ...
- Java——(七)Map之HashMap和Hashtable实现类
------Java培训.Android培训.iOS培训..Net培训.期待与您交流! ------- Map Map用于具有映射关系的数据,因此Map集合里保存着两组值,一组值用于保存Map里的ke ...
- SQL Server2005 表分区三步曲(zz)
前言 SQL Server 2005开始支持表分区,这种技术允许所有的表分区都保存在同一台服务器上.每一个表分区都和在某个文件 组(filegroup)中的单个文件关联.同样的一个文件/文件组可以容纳 ...
- 10.30 afternoon
P76竞赛时间: ????年??月??日??:??-??:?? 题目名称 他 她 它 名称 he she it 输入 he.in she.in it.in 输出 he.out she.out it.o ...
- Weex 样式
1.盒型 width height padding padding-left padding-right padding-top padding-bottom margin margin-left m ...
- Html5 部分特性
HTML5 是 W3C 与 WHATWG 合作的结果. 编者注:W3C 指 World Wide Web Consortium,万维网联盟. 编者注:WHATWG 指 Web Hypertext Ap ...
- CentOS7下配置Openvpn 2.3.12
1.下载安装包 #wget http://www.oberhumer.com/opensource/lzo/download/lzo-2.09.tar.gz#wget http://swupdate. ...
- 关于C#与.NET Framework
前几天,有一个做测试的问我.NET Framework是什么,和C#是什么关系呢. 下面我就来解释一下.NET Framework是什么:.NET Framework是一个框架,是应用程序运行时所需要 ...