Using the Task Parallel Library (TPL) for Events

The parallel tasks library was introduced with the .NET Framework 4.0 and is designed to simplify parallelism and concurrency. The API is very straightforward and usually involves passing in an Action to execute. Things get a little more interesting when you are dealing with asynchronous models such as events.

While the TPL has explicit wrappers for the asynchronous programming model (APM) that you can read about here: TPL APM Wrappers, there is no explicit way to manage events.

I usually hide the "muck" of subscribing and waiting for a
completed action in events with a callback. For example, the following
method generates a random number. I'm using a delay to simulate a
service call and a thread task to make the call back asynchronous: you
call into the method, then provide a delegate that is called once the
information is available.

private static void _GenerateRandomNumber(Action<int> callback)
{
var random = _random.Next(0, 2000) + 10;
Console.WriteLine("Generated {0}", random);
Task.Factory.StartNew(() =>
{
Thread.Sleep(1000);
callback(random);
}, TaskCreationOptions.None);
}

Now consider an algorithm that requires three separate calls to complete to provide the input values in order to compute a result. The calls are independent so they can be done in parallel. The TPL supports "parent" tasks that wait for their children to complete, and a first pass might look like this:

private static void _Incorrect()
{ var start = DateTime.Now; int x = 0, y = 0, z = 0; Task.Factory.StartNew(
() =>
{
Task.Factory.StartNew(() => _GenerateRandomNumber(result => x = result),
TaskCreationOptions.AttachedToParent);
Task.Factory.StartNew(() => _GenerateRandomNumber(result => y = result),
TaskCreationOptions.AttachedToParent);
Task.Factory.StartNew(() => _GenerateRandomNumber(result => z = result),
TaskCreationOptions.AttachedToParent);
}).ContinueWith(t =>
{
var finish = DateTime.Now;
Console.WriteLine("Bad Parallel: {0}+{1}+{2}={3} [{4}]",
x, y, z,
x+y+z,
finish - start);
_Parallel();
});
}

The code aggregates several tasks to the parent, the parent then waits for the children to finish and continues by computing the time span and showing the result. While the code executes extremely fast, the result is not what you want. Take a look:

Press ENTER to begin (and again to end)

Generated 593
Generated 1931
Generated 362
Bad Parallel: 0+0+0=0 [00:00:00.0190011]

You can see that three numbers were generated, but nothing was computed in the sum. The reason is that for the purposes of the TPL, the task ends when the code called ends. The TPL has no way to know that the callback was handed off to an asynchronous process (or event) and therefore considers the task complete once the generate call finishes executing. This returns and falls through and the computation is made before the callback fires and updates the values.

So how do you manage this and allow the tasks to execute in parallel but still make sure the values are retrieved?

For this purpose, the TPL provides a special class called TaskCompletionSource<T>.
The task completion source is a point of synchronization that you can
use to complete an asynchronous or event-based task and relay the
result. The underlying task won't complete until an exception is thrown
or the result is set.

To see how this is used, let's take the existing method and fix it using the completion sources:

private static void _Parallel()
{
var taskCompletions = new[]
{
new TaskCompletionSource<int>(),
new TaskCompletionSource<int>(),
new TaskCompletionSource<int>()
}; var tasks = new[] {taskCompletions[0].Task, taskCompletions[1].Task, taskCompletions[2].Task}; var start = DateTime.Now; Task.Factory.StartNew(() => _GenerateRandomNumber(result => taskCompletions[0].TrySetResult(result)));
Task.Factory.StartNew(() => _GenerateRandomNumber(result => taskCompletions[1].TrySetResult(result)));
Task.Factory.StartNew(() => _GenerateRandomNumber(result => taskCompletions[2].TrySetResult(result))); Task.WaitAll(tasks); var finish = DateTime.Now;
Console.WriteLine("Parallel: {0}+{1}+{2}={3} [{4}]",
taskCompletions[0].Task.Result,
taskCompletions[1].Task.Result,
taskCompletions[2].Task.Result,
taskCompletions[0].Task.Result + taskCompletions[1].Task.Result + taskCompletions[2].Task.Result,
finish - start);
}

First, I create an array of the task completions. This makes for an easy reference to coordinate the results. Next, I create an array of the underlying tasks. This provides a collection to pass to Task.WaitAll() to synchronize all return values before computing the result. Instead of using variables, the tasks now use the TaskCompletionSource to set the results after the simulated callback. The tasks won't complete until the result is set, so all values are returned before the final computation is made. Here are the results:

Generated 279
Generated 618
Generated 1013
Parallel: 618+279+1013=1910 [00:00:01.9981143]

You can see that all generated numbers are accounted for and properly added. You can also see that the tasks ran in parallel because it completed in under 2 seconds when each call had a 1 second delay.

The entire console application can simply be cut and pasted from
the following code — there are other ways to chain the tasks and make
the completions fall under a parent but this should help you get your
arms wrapped around dealing with tasks that don't complete when the
methods return, but require a synchronized completion context.

class Program
{
private static readonly Random _random = new Random(); static void Main(string[] args)
{
Console.WriteLine("Press ENTER to begin (and again to end)");
Console.ReadLine(); _Incorrect(); Console.ReadLine();
} private static void _Incorrect()
{ var start = DateTime.Now; int x = 0, y = 0, z = 0; Task.Factory.StartNew(
() =>
{
Task.Factory.StartNew(() => _GenerateRandomNumber(result => x = result),
TaskCreationOptions.AttachedToParent);
Task.Factory.StartNew(() => _GenerateRandomNumber(result => y = result),
TaskCreationOptions.AttachedToParent);
Task.Factory.StartNew(() => _GenerateRandomNumber(result => z = result),
TaskCreationOptions.AttachedToParent);
}).ContinueWith(t =>
{
var finish = DateTime.Now;
Console.WriteLine("Bad Parallel: {0}+{1}+{2}={3} [{4}]",
x, y, z,
x+y+z,
finish - start);
_Parallel();
});
} private static void _Parallel()
{
var taskCompletions = new[]
{
new TaskCompletionSource<int>(),
new TaskCompletionSource<int>(),
new TaskCompletionSource<int>()
}; var tasks = new[] {taskCompletions[0].Task, taskCompletions[1].Task, taskCompletions[2].Task}; var start = DateTime.Now; Task.Factory.StartNew(() => _GenerateRandomNumber(result => taskCompletions[0].TrySetResult(result)));
Task.Factory.StartNew(() => _GenerateRandomNumber(result => taskCompletions[1].TrySetResult(result)));
Task.Factory.StartNew(() => _GenerateRandomNumber(result => taskCompletions[2].TrySetResult(result))); Task.WaitAll(tasks); var finish = DateTime.Now;
Console.WriteLine("Parallel: {0}+{1}+{2}={3} [{4}]",
taskCompletions[0].Task.Result,
taskCompletions[1].Task.Result,
taskCompletions[2].Task.Result,
taskCompletions[0].Task.Result + taskCompletions[1].Task.Result + taskCompletions[2].Task.Result,
finish - start);
} private static void _GenerateRandomNumber(Action<int> callback)
{
var random = _random.Next(0, 2000) + 10;
Console.WriteLine("Generated {0}", random);
Task.Factory.StartNew(() =>
{
Thread.Sleep(1000);
callback(random);
}, TaskCreationOptions.None);
}
}

Using the Task Parallel Library (TPL) for Events的更多相关文章

  1. TPL(Task Parallel Library)多线程、并发功能

    The Task Parallel Library (TPL) is a set of public types and APIs in the System.Threading and System ...

  2. Winform Global exception and task parallel library exception;

    static class Program { /// <summary> /// 应用程序的主入口点. /// </summary> [STAThread] static vo ...

  3. Task Parallel Library01,基本用法

    我们知道,每个应用程序就是一个进程,一个进程有多个线程.Task Parallel Library为我们的异步编程.多线程编程提供了强有力的支持,它允许一个主线程运行的同时,另外的一些线程或Task也 ...

  4. C#5.0之后推荐使用TPL(Task Parallel Libray 任务并行库) 和PLINQ(Parallel LINQ, 并行Linq). 其次是TAP(Task-based Asynchronous Pattern, 基于任务的异步模式)

    学习书籍: <C#本质论> 1--C#5.0之后推荐使用TPL(Task Parallel Libray 任务并行库) 和PLINQ(Parallel LINQ, 并行Linq). 其次是 ...

  5. C#~异步编程再续~大叔所理解的并行编程(Task&Parallel)

    返回目录 并行这个概念出自.net4.5,它被封装在System.Threading.Tasks命名空间里,主要提供一些线程,异步的方法,或者说它是对之前Thread进行的二次封装,为的是让开发人员更 ...

  6. Task/Parallel实现异步多线程

    代码: #region Task 异步多线程,Task是基于ThreadPool实现的 { //TestClass testClass = new TestClass(); //Action<o ...

  7. 异步和多线程,委托异步调用,Thread,ThreadPool,Task,Parallel,CancellationTokenSource

    1 进程-线程-多线程,同步和异步2 异步使用和回调3 异步参数4 异步等待5 异步返回值 5 多线程的特点:不卡主线程.速度快.无序性7 thread:线程等待,回调,前台线程/后台线程, 8 th ...

  8. Task Parallel Library02,更进一步

    在前一篇中,了解了Task的基本用法 如果一个方法返回Task,Task<T>,如何获取Task的返回值,获取值的过程会阻塞线程吗? static void Main(string[] a ...

  9. FunDA(15)- 示范:任务并行运算 - user task parallel execution

    FunDA的并行运算施用就是对用户自定义函数的并行运算.原理上就是把一个输入流截分成多个输入流并行地输入到一个自定义函数的多个运行实例.这些函数运行实例同时在各自不同的线程里同步运算直至耗尽所有输入. ...

随机推荐

  1. JS中判断JSON数据是否存在某字段的方法 JavaScript中判断json中是否有某个字段

    方式一 !("key" in obj) 方式二 obj.hasOwnProperty("key")  //obj为json对象. 实例: var jsonwor ...

  2. postal.js使用

    requirejs.config({ //默认情况下模块所在目录为js/lib baseUrl: './', //当模块id前缀为app时,他便由js/app加载模块文件 //这里设置的路径是相对与b ...

  3. VB6-表格控件MSHFlexGrid 实用代码

    在vb6中要显示数据虽然有datagrid.msflexgrid.mshflexgrid.vsflexgrid.True dbgrid7.0 可选,不过我在工作中用的最多的还是MSHFlexGrid, ...

  4. Hadoop学习—最大的敌人是自己

    (大讲台:国内首个it在线教育混合式自适应学习) 如果没有那次学习机会,我依然深陷在封闭的泥塘里. 我是今年刚毕业的大学生,我学习成绩不错,所学也是国内很厉害的专业,全国范围内只有6所院校拥有学位授予 ...

  5. 如何确定照片是否被PS过

    除了用软件,还可以先右键属性----解除锁定----重新打开属性看详细信息.

  6. VMWare虚拟机系统网络配置

  7. 1182-IP地址转换

    描述 给定一个点分十进制的IP地址,把这个IP地址转换为二进制形式. 输入 输入只有一行,一个点分十进制的IP地址 包括四个正整数,用三个.分开,形式为a.b.c.d 其中0<=a,b,c,d& ...

  8. UVA 658 It's not a Bug, it's a Feature!

    这个题目巧妙之处在于用二进制的每个位1,0分别表示bug的有无,以及实施补丁对相应bug的要求以及实施后的对bug的影响. 软件bug的状态:1表示相应bug仍然存在,0表示已经修复.这样可以将软件的 ...

  9. SGU 488 Dales and Hills

    这给题目和LIS类似,只不过是求连续的单调序列,用单调队列可破之,比如求LDIS(连续单增序列),如果a[i]大于栈顶元素入栈,将top作为序列长度,反过来再扫一遍就是包含该元素的单调递减序列,这样通 ...

  10. 【Linux安全】安全口令策略设置

    命令: vim /etc/login.defs 默认设置: # Password aging controls: # # PASS_MAX_DAYS Maximum number of days a ...