1.RDD(Resilient Distributed DataSet)是Spark生态系统中最基本的抽象,代表不可变的、可并行操作的分区元素集合。RDD这个类有RDD系列所有基本的操作,比如map、filter、persist.另外,org.apache.spark.rdd.PairRDDFunctions含有key-value类型的RDD的基本操作,比如groupby、join;org.apache.spark.rdd.DoubleRDDFunctions含有Double类型的RDD的基本操作;org.apache.spark.rdd.SequenceFileRDDFunctions含有可以将RDD保存SequenceFiles的基本操作。所有的操作会通过有隐式转换适用于任何RDD。

每个RDD的5个主要属性:

- A list of partitions
- A function for computing each split
- A list of dependencies on other RDDs
- Optionally, a Partitioner for key-value RDDs (e.g. to say that the RDD is hash-partitioned)
- Optionally, a list of preferred locations to compute each split on (e.g. block locations for an HDFS file)

2.重要方法解读

(1)//注册一个新的RDD,并根据当前值加1返回它的RDD的ID
private[spark] def newRddId(): Int = nextRddId.getAndIncrement()

(2)缓存相关

a)persist、cache

/**
 * 指定RDD缓存的Level,详见StorageLevel object
 *
 * @param newLevel 缓存Level

* @param allowOverride 是否重写缓存
 */
private def persist(newLevel: StorageLevel, allowOverride: Boolean): this.type = {
  if (storageLevel != StorageLevel.NONE && newLevel != storageLevel && !allowOverride) {
    throw new UnsupportedOperationException(
      "Cannot change storage level of an RDD after it was already assigned a level")
  }
  if (storageLevel == StorageLevel.NONE) {
    sc.cleaner.foreach(_.registerRDDForCleanup(this))
    sc.persistRDD(this)
  }
  storageLevel = newLevel
  this
}

//可见cache其实是调用的persist方法,RDD默认的缓存策略是MEMORY_ONLY

def cache(): this.type = persist()

def persist(): this.type = persist(StorageLevel.MEMORY_ONLY)

b)unpersist

//将RDD设置为不缓存,并且把内存或磁盘上的blocks都删除

def unpersist(blocking: Boolean = true): this.type = {
  logInfo("Removing RDD " + id + " from persistence list")
  sc.unpersistRDD(id, blocking)

//将缓存Level设置为NONE
  storageLevel = StorageLevel.NONE
  this
}

unpersistRDD(id,blocking)的源码如下所示:

/**
 * 将内存或磁盘中缓存的RDD删除

*/
private[spark] def unpersistRDD(rddId: Int, blocking: Boolean = true) {
  env.blockManager.master.removeRdd(rddId, blocking)

//persistentRdds是一个弱引用得HashMap,key为rddId,value为对应的RDD
  persistentRdds.remove(rddId)
  listenerBus.post(SparkListenerUnpersistRDD(rddId))
}

(3)分区partitions

//得到RDD的所有分区,并以数组形式返回

final def partitions: Array[Partition] = {
  checkpointRDD.map(_.partitions).getOrElse {
    if (partitions_ == null) {
      partitions_ = getPartitions
    }
    partitions_
  }
}

(4)

//得到分区预先存放的位置

final def preferredLocations(split: Partition): Seq[String] = {
  checkpointRDD.map(_.getPreferredLocations(split)).getOrElse {
    getPreferredLocations(split)
  }
}

(5)依赖

//得到窄依赖的祖先节点

private[spark] def getNarrowAncestors: Seq[RDD[_]] = {
  val ancestors = new mutable.HashSet[RDD[_]]

def visit(rdd: RDD[_]) {
    val narrowDependencies = rdd.dependencies.filter(_.isInstanceOf[NarrowDependency[_]])
    val narrowParents = narrowDependencies.map(_.rdd)
    val narrowParentsNotVisited = narrowParents.filterNot(ancestors.contains)
    narrowParentsNotVisited.foreach { parent =>
      ancestors.add(parent)
      visit(parent)
    }
  }

【原】1.1RDD源码解读(一)的更多相关文章

  1. 【原】SparkContex源码解读(二)

    版权声明:本文为原创文章,未经允许不得转载. 继续前一篇的内容.前一篇内容为: SparkContex源码解读(一)http://www.cnblogs.com/yourarebest/p/53266 ...

  2. 【原】1.1RDD源码解读(二)

    (6)transformation 操作,通过外在的不同RDD表现形式来达到内部数据的处理过程.这类操作并不会触发作业的执行,也常被称为lazy操作. 大部分操作会生成并返回一个新的RDD,例sort ...

  3. 【原】SparkContex源码解读(一)

    版权声明:本文为原创文章,未经允许不得转载. SparkContext(简称sc)是Spark程序的主入口,代表一个连接到Spark集群(Standalone.YARN.Mesos三种集群部署模式)的 ...

  4. 【原】Spark不同运行模式下资源分配源码解读

    版权声明:本文为原创文章,未经允许不得转载. 复习内容: Spark中Task的提交源码解读 http://www.cnblogs.com/yourarebest/p/5423906.html Sch ...

  5. 【原】Spark中Job的提交源码解读

    版权声明:本文为原创文章,未经允许不得转载. Spark程序程序job的运行是通过actions算子触发的,每一个action算子其实是一个runJob方法的运行,详见文章 SparkContex源码 ...

  6. 【原】AFNetworking源码阅读(六)

    [原]AFNetworking源码阅读(六) 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 这一篇的想讲的,一个就是分析一下AFSecurityPolicy文件,看看AF ...

  7. SDWebImage源码解读_之SDWebImageDecoder

    第四篇 前言 首先,我们要弄明白一个问题? 为什么要对UIImage进行解码呢?难道不能直接使用吗? 其实不解码也是可以使用的,假如说我们通过imageNamed:来加载image,系统默认会在主线程 ...

  8. underscore 源码解读之 bind 方法的实现

    自从进入七月以来,我的 underscore 源码解读系列 更新缓慢,再这样下去,今年更完的目标似乎要落空,赶紧写一篇压压惊. 前文 跟大家简单介绍了下 ES5 中的 bind 方法以及使用场景(没读 ...

  9. Alamofire源码解读系列(四)之参数编码(ParameterEncoding)

    本篇讲解参数编码的内容 前言 我们在开发中发的每一个请求都是通过URLRequest来进行封装的,可以通过一个URL生成URLRequest.那么如果我有一个参数字典,这个参数字典又是如何从客户端传递 ...

随机推荐

  1. 前端资源多个产品整站一键打包&包版本管理(三)—— gulp分流

    问题: 当我们一个工作台里面有好几个项目的时候,我们要为项目的前端资源进行打包,但是,gulpfile只有一个,如果我们把所有的打包都放在同一个文件里面,首先文件会越来越大,而且不便于管理,这时,我们 ...

  2. codeforces 8VC Venture Cup 2016 - Elimination Round C. Lieges of Legendre

    C. Lieges of Legendre 题意:给n,m表示有n个为2的倍数,m个为3的倍数:问这n+m个数不重复时的最大值 最小为多少? 数据:(0 ≤ n, m ≤ 1 000 000, n + ...

  3. An error occurred while collecting items to be installed session context was:(profile=DefaultProfile... 解决方案

    遇到同样问题的小伙伴请:点击Eclipse上方工具栏中help --> Install new software... --> 看图 点击进红框的位置在打开的窗口中,将窗口右侧的Avail ...

  4. typedef和#define的区别

    转自:http://www.cnblogs.com/kerwinshaw/archive/2009/02/02/1382428.html 一.typedef的用法在C/C++语言中,typedef常用 ...

  5. Hibernate各种主键生成策略2

    先来看看主键映射的标签: <id   (1)name="propertyName"   (2)column="column_name" (3)type=& ...

  6. XSS传染基础——JavaScript中的opener、iframe

    最近研究XSS,根据etherDream大神的博客 延长XSS生命周期 写了一个子页面父页面相互修改的demo. 一. 子页面.父页面相互修改——window.opener.window.open 在 ...

  7. BZOJ 3343教主的魔法

    Description 教主最近学会了一种神奇的魔法,能够使人长高.于是他准备演示给XMYZ信息组每个英雄看.于是N个英雄们又一次聚集在了一起,这次他们排成了一列,被编号为1.2.…….N. 每个人的 ...

  8. hdu 1403 Longest Common Substring(最长公共子字符串)(后缀数组)

    http://acm.hdu.edu.cn/showproblem.php?pid=1403 Longest Common Substring Time Limit: 8000/4000 MS (Ja ...

  9. bzoj 2555: SubString 后缀自动机+LCT

    2555: SubString Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 688  Solved: 235[Submit][Status][Dis ...

  10. BZOJ 4027 [HEOI 2015] 兔子与樱花 解题报告

    这个题看起来好神的感觉.实际上也好神... 我们可以考虑设 $f_u$ 表示以 $u$ 为根的子树中最多能删多少个点, 再设 $g_u$ 表示以 $u$ 为根的子树中删了 $f_u$ 个点之后,$u$ ...