这题的俩种方法都是看别人的代码,方法可以学习学习,要多看看。。

几何题用到向量。。

Points on Cycle

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 1294    Accepted Submission(s): 455

Problem Description
There is a cycle with its center on the origin. Now give you a point on the cycle, you are to find out the other two points on it, to maximize the sum of the distance between each other you may assume that the radius of the cycle will not exceed 1000.
 
Input
There are T test cases, in each case there are 2 decimal number representing the coordinate of the given point.
 
Output
For each testcase you are supposed to output the coordinates of both of the unknow points by 3 decimal places of precision
Alway output the lower one first(with a smaller Y-coordinate value), if they have the same Y value output the one with a smaller X.

NOTE

when output, if the absolute difference between the coordinate values X1 and X2 is smaller than 0.0005, we assume they are equal.

 
Sample Input
2
1.500 2.000
563.585 1.251
 
Sample Output
0.982 -2.299 -2.482 0.299
-280.709 -488.704 -282.876 487.453
 
Source

//题意:一个以原点为中心的圆,告诉你圆上的一个点,求与另外的两个点组成的三角形的周长最长的两点作标。
//根据几何知识,知道圆内等边三角形的周长最长。所以题目转化为求已知一个点的圆内接等边三角形的另两点作标。
//思路:设P(x,y),一个方程是pow(x,2)+pow(y,2)=pow(r,2);另一个方程是根据向量知识,向量的夹角公式得到方程。
//因为圆心角夹角为120度,已知一个向量(即一个点作标),所以COS(2PI/3)=a*b/|a|*|b|;(a,b为向量);
//已知角和a向量,就可求b向量b(x,y).由方程组可求得(x,y);最后得到的是一元二次方程组,可得到两个解,即为两个点的作标。
//代码如下:
#include <stdio.h>
#include <math.h>
#define PI 3.1415926
int main()
{
double x,y,x1,y1,x2,y2,cosx,a,b,c,r,delta;
int t;
scanf("%d",&t);
while(t--)
{
scanf("%lf%lf",&x,&y);
r=sqrt(x*x+y*y);
a=r*r;
b=r*r*y;
c=r*r*r*r/4-x*x*r*r;
delta=b*b-4*a*c;
y1=(-1*b-sqrt(delta))/(2*a);
y2=(-1*b+sqrt(delta))/(2*a);
if(x==0)
{
x1=-sqrt(r*r-y1*y1);
x2=sqrt(r*r-y2*y2);
}
else
{
x1=(-1*r*r/2-y*y1)/x;
x2=(-1*r*r/2-y*y2)/x;
}
printf("%.3lf %.3lf %.3lf %.3lf\n",x1,y1,x2,y2);
}
return 0;
}
/*已知一个以(0,0)为圆心的圆和圆上的一点(x0,y0)求圆上的另外两点(x1,y1,)(x2,y2),使得向量(x1,y1)(x2,y2)和(x0,y0)各个向量两两之间夹角为120度
此题主要用到向量的叉乘和点乘列出两个二元一次方程组
1.
(x0,y0)X (x1,y1) = sin(120)*R^2 (r为圆的半径)
(x0,y0) * (x1,y1) = cos(120)*R^2
结果为:
x1=b*x0-a*y0; a=sin120
y1=b*y0+a*x0; b=cos120;
2.
(x0,y0)X (x2,y2) = -sin(120)*R^2 (r为圆的半径)
(x0,y0) * (x2,y2) = cos(120)*R^2
注:题目假设向量(x1,y1)在向量(x0,y0)逆时针方向 故叉乘结果为正值
(x2,y2)于(x0,y0)的顺时针方向 故叉乘结果为负值*/
#include <stdio.h>
#include <math.h>
int main()
{
double a,b,sinx,cosx,x0,y0,x1,y1,x2,y2;
int t;
a=sinx=sqrt(3.0)/2;
b=cosx=-0.5;
scanf("%d",&t);
while(t--)
{
scanf("%lf%lf",&x0,&y0);
x1=b*x0-a*y0;
y1=b*y0+a*x0;
x2=b*x0+a*y0;
y2=b*y0-a*x0;
if(y1<y2||((abs(y1-y2)<0.005)&&x1<x2))
{
printf("%.3lf %.3lf %.3lf %.3lf\n",x1,y1,x2,y2);
}
else
printf("%.3lf %.3lf %.3lf %.3lf\n",x2,y2,x1,y1);
}
return 0;
}

HDU-1700 Points on Cycle的更多相关文章

  1. hdu 1700 Points on Cycle(坐标旋转)

    http://acm.hdu.edu.cn/showproblem.php?pid=1700 Points on Cycle Time Limit: 1000/1000 MS (Java/Others ...

  2. HDU 1700 Points on Cycle (坐标旋转)

    题目链接:HDU 1700 Problem Description There is a cycle with its center on the origin. Now give you a poi ...

  3. HDU 1700 Points on Cycle (几何 向量旋转)

    http://acm.hdu.edu.cn/showproblem.php?pid=1700 题目大意: 二维平面,一个圆的圆心在原点上.给定圆上的一点A,求另外两点B,C,B.C在圆上,并且三角形A ...

  4. HDU 1700 Points on Cycle(向量旋转)

    题目链接 水题,卡了下下精度. #include <cstdio> #include <iostream> #include <cmath> using names ...

  5. hdu 1700 Points on Cycle 水几何

    已知圆心(0,0)圆周上的一点,求圆周上另外两点使得三点构成等边三角形. 懒得推公式,直接用模板2圆(r1=dist,r2=sqrt(3)*dist)相交水过 #include<cstdio&g ...

  6. Points on Cycle (hdu1700,几何)

    Points on Cycle Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  7. hdu1700 Points on Cycle

    地址:http://acm.split.hdu.edu.cn/showproblem.php?pid=1700 题目: Points on Cycle Time Limit: 1000/1000 MS ...

  8. 暑假集训(2)第九弹 ----- Points on Cycle(hdu1700)

                                                Points on Cycle Time Limit:1000MS     Memory Limit:32768 ...

  9. L - Points on Cycle(旋转公式)

    L - Points on Cycle Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u ...

随机推荐

  1. 队列(顺序存储)C++模板实现

    队列:一端进行插入,另一端进行删除的线性结构,具有先进先出性.利用数组来实现队列将面临"假溢出"的情况,如下图所示: front:永远指向队首元素,队首在本文中是允许删除元素的一端 ...

  2. 网站开发常用jQuery插件总结(一)提示插件alertify

    1.alertify插件功能 主要实现提示功能,用于代替js中的alert,confirm,prompt,显示友好的提示框 2.alertify官方地址 http://fabien-d.github. ...

  3. 青瓷qici - H5小游戏 抽奖机 1 素材

    素材链接… 我们准备好所有素材 青瓷的素材引入,可以通过拖动的方式.我们打开windows的资源管理器,所有素材拖动到texture里面 框架会帮你进行预处理方便加载 我们在atlas文件夹里面新建目 ...

  4. PHP — 用PHP实现一个双向队列

    1.简介 deque,全名double-ended queue,是一种具有队列和栈的性质的数据结构.双端队列中的元素可以从两端弹出,其限定插入和删除操作在表的两端进行.双向队列(双端队列)就像是一个队 ...

  5. Git常用命令汇总

    1.初始化相关 git init 初始化仓库 git remove add origin url 添加仓库地址 git remove rm origin 删除仓库地址 git clone 克隆别人的分 ...

  6. 开发设计模式(五)单例模式(Singleton Pattern)

    http://blog.sina.com.cn/s/blog_89d90b7c0101805m.html 单例模式:意思就是只有一个实例.单例模式确保某一个类只有一个实例,而且自行实例化并向整个系统提 ...

  7. C# - implicit, explicit

    如果类型直接没有继承关系,也没有共享接口,想在这两个类型之间进行转换,就必须重载转换运算符. 此时需要关键字implicit和explicit. 下面定义了类型ConvClass1和ConvClass ...

  8. 当页面编辑或运行提交时,出现“从客户端中检测到有潜在危险的request.form值”问题,该怎么办呢?

    最近在学习highcharts时,关于其中的导出功能,本来是想把导出的图片存放在本地,发现只有在电脑联网的情况下才可以一下导出图片,后来查阅了一番资料,才发现highcharts中的导出默认的官网服务 ...

  9. C#正则表达式之字符替换

    string strTest= "www.BaiDu.com",strRst=""; //忽略大小写,将strTest中的BaiDu替换为baidu Regex ...

  10. C++引用的实质

    转自探索c++的底层机制 在看这篇文章之前,请你先要明白一点:那就是c++为我们所提供的各种存取控制仅仅是在编译阶段给我们的限制,也就是说是编译器确保了你在完成任务之前的正确行为,如果你的行为不正确, ...