Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and set.

get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.
set(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.

  • 题目大意:为LRU Cache设计一个数据结构,它支持两个操作:

   1)get(key):如果key在cache中,则返回对应的value值,否则返回-1

   2)set(key,value):如果key不在cache中,则将该(key,value)插入cache中(注意,如果cache已满,则必须把最近最久未使用的元素从cache中删除);如果key在cache中,则重置value的值。

  • 解题思路:题目让设计一个LRU Cache,即根据LRU算法设计一个缓存。在这之前需要弄清楚LRU算法的核心思想,LRU全称是Least

Recently Used,即最近最久未使用的意思。在操作系统的内存管理中,有一类很重要的算法就是内存页面置换算法(包括FIFO,LRU,LFU等几种常见页面置换算法)。事实上,Cache算法和内存页面置换算法的核心思想是一样的:都是在给定一个限定大小的空间的前提下,设计一个原则如何来更新和访问其中的元素。下面说一下LRU算法的核心思想,LRU算法的设计原则是:如果一个数据在最近一段时间没有被访问到,那么在将来它被访问的可能性也很小。也就是说,当限定的空间已存满数据时,应当把最久没有被访问到的数据淘汰。

  而用什么数据结构来实现LRU算法呢?可能大多数人都会想到:用一个数组来存储数据,给每一个数据项标记一个访问时间戳,每次插入新数据项的时候,先把数组中存在的数据项的时间戳自增,并将新数据项的时间戳置为0并插入到数组中。每次访问数组中的数据项的时候,将被访问的数据项的时间戳置为0。当数组空间已满时,将时间戳最大的数据项淘汰。

  这种实现思路很简单,但是有什么缺陷呢?需要不停地维护数据项的访问时间戳,另外,在插入数据、删除数据以及访问数据时,时间复杂度都是O(n)。

  那么有没有更好的实现办法呢?

  那就是利用链表和hashmap。当需要插入新的数据项的时候,如果新数据项在链表中存在(一般称为命中),则把该节点移到链表头部,如果不存在,则新建一个节点,放到链表头部,若缓存满了,则把链表最后一个节点删除即可。在访问数据的时候,如果数据项在链表中存在,则把该节点移到链表头部,否则返回-1。这样一来在链表尾部的节点就是最近最久未访问的数据项。

  总结一下:根据题目的要求,LRU Cache具备的操作:

  1)set(key,value):如果key在hashmap中存在,则先重置对应的value值,然后获取对应的节点cur,将cur节点从链表删除,并移动到链表的头部;若果key在hashmap不存在,则新建一个节点,并将节点放到链表的头部。当Cache存满的时候,将链表最后一个节点删除即可。

  2)get(key):如果key在hashmap中存在,则把对应的节点放到链表头部,并返回对应的value值;如果不存在,则返回-1。

package com.Netesay.interview;

import java.util.HashMap;
import java.util.Map; /**
* @Author: weblee
* @Email: likaiweb@163.com
* @Blog: http://www.cnblogs.com/lkzf/
* @Time: 2014年10月24日下午6:29:40
*
************* function description ***************
*
****************************************************
*/ public class LRUCache {
Map<Integer, CacheNode> cacheMap;
CacheNode head, tail;
int capacity; //使用双向链表和map,map将k对应与链表的节点
//链表里保存k和value
public LRUCache(int capacity) {
this.capacity = capacity; cacheMap = new HashMap<Integer, CacheNode>(capacity); head = new CacheNode(-1, -1);
tail = new CacheNode(1, 1); head.next = tail;
tail.pre = head;
} public int get(int key) {
if (cacheMap.containsKey(key)) {
CacheNode node = (CacheNode)cacheMap.get(key); put2Head(node); return node.value;
} else {
return -1;
}
} public void set(int key, int value) {
if (cacheMap.containsKey(key)) {
CacheNode p = cacheMap.get(key); p.value = value; put2Head(p);
} else if(cacheMap.size() < capacity) {
CacheNode node = new CacheNode(key, value);
put2Head(node);
cacheMap.put(key, node);
} else {
CacheNode p = new CacheNode(key, value);
put2Head(p);
cacheMap.put(key, p); int tmpKey = removeEnd();
cacheMap.remove(tmpKey);
}
} private void put2Head(CacheNode p) {
if (p.next != null && p.pre != null) {
p.pre.next = p.next;
p.next.pre = p.pre;
} p.pre = head;
p.next = head.next;
head.next.pre = p;
head.next = p;
} private int removeEnd() {
CacheNode p = tail.pre;
tail.pre.pre.next = tail;
tail.pre = p.pre; p.pre = null;
p.next = null; return p.key;
}
} class CacheNode {
int key;
int value; CacheNode pre;
CacheNode next; public CacheNode(int key, int value) {
this.key = key;
this.value = value;
}
}

面试题:实现LRUCache::Least Recently Used的缩写,意思是最近最少使用,它是一种Cache替换算法的更多相关文章

  1. lettcode 上的几道哈希表与链表组合的数据结构题

    目录 LRU缓存 LFU缓存 全O(1)的数据结构 lettcode 上的几道哈希表与链表组合的数据结构题 下面这几道题都要求在O(1)时间内完成每种操作. LRU缓存 LRU是Least Recen ...

  2. 操作系统之LRU算法 C语言链表实现

    LRU是Least Recently Used的缩写,即最近最少使用,是一种常用的页面置换算法,选择最近最久未使用的页面予以淘汰.该算法赋予每个页面一个访问字段,用来记录一个页面自上次被访问以来所经历 ...

  3. 听说同学你搞不懂Java的LinkedHashMap,可笑

    先看再点赞,给自己一点思考的时间,微信搜索[沉默王二]关注这个有颜值却假装靠才华苟且的程序员.本文 GitHub github.com/itwanger 已收录,里面还有我精心为你准备的一线大厂面试题 ...

  4. 【python刷题】LRU

    什么是LRU? LRU是Least Recently Used的缩写,即最近最少使用,是一种常用的页面置换算法,选择最近最久未使用的页面予以淘汰.该算法赋予每个页面一个访问字段,用来记录一个页面自上次 ...

  5. JS 实现一个 LRU 算法

    LRU 是 Least Recently Used 的缩写,即最近最少使用,是一种常用的页面置换算法,选择内存中最近最久未使用的页面予以淘汰. 可用的 NodeJS 库见node-lru-cache ...

  6. Javascript 手写 LRU 算法

    LRU 是 Least Recently Used 的缩写,即最近最少使用.作为一种经典的缓存策略,它的基本思想是长期不被使用的数据,在未来被用到的几率也不大,所以当新的数据进来时我们可以优先把这些数 ...

  7. 什么是LRU缓存淘汰机制

    LRU是Least Recently Used的缩写,即最近最少使用,是一种常用的页面置换算法,选择最近最久未使用的页面予以淘汰.该算法赋予每个页面一个访问字段,用来记录一个页面自上次被访问以来所经历 ...

  8. Android——LruCache源码解析

    以下针对 Android API 26 版本的源码进行分析. 在了解LruCache之前,最好对LinkedHashMap有初步的了解,LruCache的实现主要借助LinkedHashMap.Lin ...

  9. 常见面试题之操作系统中的LRU缓存机制实现

    LRU缓存机制,全称Least Recently Used,字面意思就是最近最少使用,是一种缓存淘汰策略.换句话说,LRU机制就是认为最近使用的数据是有用的,很久没用过的数据是无用的,当内存满了就优先 ...

随机推荐

  1. cocos2d-x 的CCObject与autorelease 之深入分析

    转自: http://blog.csdn.net/honghaier/article/details/8160519 CCObject.h: #ifndef __CCOBJECT_H__ #defin ...

  2. PHP同时操作两个mysql数据库

    $connect=mysql_connect("localhost","root","",true); $db=mysql_select_d ...

  3. careercup-递归和动态规划 9.8

    9.8 给定数量不限的硬币,币值为25分.10分.5分和1分,编写代码就是n分有几种表示法. 解法: 使用回溯法进行解决,实际上就是一个类似枚举的过程,主要是在搜索尝试过程中寻找问题的解,当发现已不满 ...

  4. CCLabelTTF 如何支持换行符和换行

    参考自http://www.cocos2d-x.org/wiki/How_does_CCLabelTTF_support_line_breaks_and_wrapping 环境: cocos2d-x ...

  5. C中sizeof()的用法——32位和64位下的sizeof()

    机器平台:X86_64 处理器 操作系统:Red Hat 4.1.2-14 编译器: gcc version 4.1.2 20070626 Size of char is:               ...

  6. Android开发之玩转FlexboxLayout布局

    在这之前,我曾认真的研究过鸿洋大神的Android 自定义ViewGroup 实战篇 -> 实现FlowLayout,按照大神的思路写出了一个流式布局,所有的东西都是难者不会会者不难,当自己能自 ...

  7. 转:ORACLE制造方法的比较

    转自:http://blog.itpub.net/133041/viewspace-438549/ 1.离散制造. 2.重复制造 3.流式制造 Oracle Applications 支持离散.项目. ...

  8. mono & apache install

    1.red hat 6安装完后网卡是默认不启动的 作为双生兄弟的CENTOS同样如是 第一步 设置网卡开机启动 进入 路径此目录下修改网卡配置文件 如果网卡驱动正常 会有如下文件 只要修改 ifcfg ...

  9. jquery click事件的可选参数data的作用

    $("#ID").click({x:"value"},function (e) { alert(e.data.x); });

  10. webstom 如何获取github上面的项目工程

    需要你配好webstorm的github相关的配置,安装好git.exe; 如何配置请参考: webstorm 如何配置git 这个点击github后 会有个提示框 如下图: 如果没有成功,会弹出下面 ...