Kafka is a distributed publish-subscribe messaging system. It was originally developed at LinkedIn and became an Apache project in July, 2011. Today, Kafka is used by LinkedIn, Twitter, and Square for applications including log aggregation, queuing, and real time monitoring and event processing.

In the upcoming version 0.8 release, Kafka will support intra-cluster replication, which increases both the availability and the durability of the system. In the following post, I will give an overview of Kafka's replication design.

Kafka Introduction

Kafka provides a publish-subscribe solution that can handle all activity stream data and processing on a consumer-scale web site. This kind of activity (page views, searches, and other user actions) are a key ingredient in many of the social feature on the modern web. Kafka differs from traditional messaging systems in that:

  1. It's designed as a distributed system that's easy to scale out.
  2. It persists messages on disk and thus can be used for batched consumption such as ETL, in addition to real time applications.
  3. It offers high throughput for both publishing and subscribing.
  4. It supports multi-subscribers and automatically balances the consumers during failure.

Check out the Kafka Design Wiki for more details.

Replication

With replication, Kafka clients will get the following benefits:

  1. A producer can continue to publish messages during failure and it can choose between latency and durability, depending on the application.
  2. A consumer continues to receive the correct messages in real time, even when there is failure.

All distributed systems must make trade-offs between guaranteeing consistency, availability, and partition tolerance (CAP Theorem). Our goal was to support replication in a Kafka cluster within a single datacenter, where network partitioning is rare, so our design focuses on maintaining highly available and strongly consistent replicas. Strong consistency means that all replicas are byte-to-byte identical, which simplifies the job of an application developer.

Strongly consistent replicas

In the literature, there are two typical approaches of maintaining strongly consistent replicas. Both require one of the replicas to be designated as the leader, to which all writes are issued. The leader is responsible for ordering all incoming writes, and for propagating those writes to other replicas (followers), in the same order.

The first approach is quorum-based. The leader waits until a majority of replicas have received the data before it is considered safe (i.e., committed). On leader failure, a new leader is elected through the coordination of a majority of the followers. This approach is used in Apache Zookeeper and Google'sSpanner.

The second approach is for the leader to wait for "all" (to be clarified later) replicas to receive the data. When the leader fails, any other replica can then take over as the new leader.

We selected the second approach for Kafka replication for two primary reasons:

  1. The second approach can tolerate more failures with the same number of replicas. That is, it can tolerate f failures with f+1 replicas, while the first approach often only tolerates f failures with 2f +1 replicas. For example, if there are only 2 replicas, the first approach can't tolerate any failures.
  2. While the first approach generally has better latency, as it hides the delay from a slow replica, our replication is designed for a cluster within the same datacenter, so variance due to network delay is small.

Terminology

To understand how replication is implemented in Kafka, we need to first introduce some basic concepts. In Kafka, a message stream is defined by a topic, divided into one or more partitions. Replication happens at the partition level and each partition has one or more replicas.

The replicas are assigned evenly to different servers (called brokers) in a Kafka cluster. Each replica maintains a log on disk. Published messages are appended sequentially in the log and each message is identified by a monotonically increasing offset within the log.

The offset is logical concept within a partition. Given an offset, the same message can be identified in each replica of the partition. When a consumer subscribes to a topic, it keeps track of an offset in each partition for consumption and uses it to issue fetch requests to the broker.

Implementation

 
Figure 1. A Kafka cluster with 4 brokers, 1 topic and 2 partitions, each with 3 replicas

When a producer publishes a message to a partition in a topic, the message is first forwarded to the leader replica of the partition and is appended to its log. The follower replicas keep pulling new messages from the leader. Once enough replicas have received the message, the leader commits it.

One subtle issue is how the leader decides what's enough. The leader can't always wait for writes to complete on all replicas. This is because any follower replica can fail and the leader can't wait indefinitely.

To address this problem, for each partition of a topic, we maintain an in-sync replica set (ISR). This is the set of replicas that are alive and have fully caught up with the leader (note that the leader is always in ISR). When a partition is created initially, every replica is in the ISR. When a new message is published, the leader waits until it reaches all replicas in the ISR before committing the message. If a follower replica fails, it will be dropped out of the ISR and the leader then continues to commit new messages with fewer replicas in the ISR. Notice that now, the system is running in an under replicated mode.

The leader also maintains a high watermark (HW), which is the offset of the last committed message in a partition. The HW is continuously propagated to the followers and is checkpointed to disk in each broker periodically for recovery.

When a failed replica is restarted, it first recovers the latest HW from disk and truncates its log to the HW. This is necessary since messages after the HW are not guaranteed to be committed and may need to be thrown away. Then, the replica becomes a follower and starts fetching messages after the HW from the leader. Once it has fully caught up, the replica is added back to the ISR and the system is back to the fully replicated mode.

Handling Failures

We rely on Zookeeper for detecting broker failures. Similar to Helix, we use a controller (embedded in one of the brokers) to receive all Zookeeper notifications about the failure and to elect new leaders. If a leader fails, the controller selects one of the replicas in the ISR as the new leader and informs the followers about the new leader.

By design, committed messages are always preserved during leadership change whereas some uncommitted data could be lost. The leader and the ISR for each partition are also stored in Zookeeper and are used during the failover of the controller. Both the leader and the ISR are expected to change infrequently since failures are rare.

For clients, a broker only exposes committed messages to the consumers. Since committed data is always preserved during broker failures, a consumer can automatically fetch messages from another replica, using the same offset.

A producer can choose when to receive the acknowledgement from the broker after publishing a message. For example, it can wait until the message is committed by the leader (i.e, it's received by all replicas in the ISR). Alternatively, it may choose to receive an acknowledgement as soon as the message is appended to the log in the leader replica, but may not be committed yet. In the former case, the producer has to wait a bit longer, but all acknowledged messages are guaranteed to be kept by the brokers. In the latter case, the producer has lower latency, but a smaller number of acknowledged messages could be lost when a broker fails.

More info

For more details of the design and the implementation, check out the Kafka Replication Wiki and drop by my Kafka Replication Talk at ApacheCon 2013 in late February.

reference from:http://engineering.linkedin.com/kafka/intra-cluster-replication-apache-kafka

https://cwiki.apache.org/confluence/display/KAFKA/Kafka+Replication

Intra-cluster Replication in Apache Kafka--reference的更多相关文章

  1. Apache Kafka教程

    1.卡夫卡教程 今天,我们正在使用Apache Kafka Tutorial开始我们的新旅程.在这个Kafka教程中,我们将看到什么是Kafka,Apache Kafka历史以及Kafka的原因.此外 ...

  2. How to set an Apache Kafka multi node – multi broker cluster【z】

    Set a multi node Apache ZooKeeper cluster On every node of the cluster add the following lines to th ...

  3. Understanding, Operating and Monitoring Apache Kafka

    Apache Kafka is an attractive service because it's conceptually simple and powerful. It's easy to un ...

  4. Apache Kafka: Next Generation Distributed Messaging System---reference

    Introduction Apache Kafka is a distributed publish-subscribe messaging system. It was originally dev ...

  5. How Cigna Tuned Its Spark Streaming App for Real-time Processing with Apache Kafka

    Explore the configuration changes that Cigna’s Big Data Analytics team has made to optimize the perf ...

  6. Configuring Apache Kafka for Performance and Resource Management

    Apache Kafka is optimized for small messages. According to benchmarks, the best performance occurs w ...

  7. Configuring High Availability and Consistency for Apache Kafka

    To achieve high availability and consistency targets, adjust the following parameters to meet your r ...

  8. Benchmarking Apache Kafka: 2 Million Writes Per Second (On Three Cheap Machines)

    I wrote a blog post about how LinkedIn uses Apache Kafka as a central publish-subscribe log for inte ...

  9. 《Apache kafka实战》读书笔记-kafka集群监控工具

    <Apache kafka实战>读书笔记-kafka集群监控工具 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 如官网所述,Kafka使用基于yammer metric ...

随机推荐

  1. Linq学习之旅——LINQ查询表达式

    1. 概述 2. from子句 3. where子句 4. select子句 5. group子句 6. into子句 7. 排序子句 8. let子句 9. join子句 10. 小结 1. 概述 ...

  2. Mongodb与关系型数据库

    MongoDB没有固定的关系约束 没有事务, 安全性不高 不一定保证数据的一致性. ACID不符合 NoSQL 放弃了传统关系型数据库严格的事务一致性和范式约束,采用弱一致性模型. http://os ...

  3. Http 与 Socket 区别

    HTTP:超文本传输协议,首先它是一个协议,并且是基于TCP/IP协议基础之上的应用层协议.TCP/IP协议是传输层协议,主要解决数据如何在网络中传输,HTTP是应用层协议,主要解决如何包装数据.HT ...

  4. [转贴]WebService的简单实现 C++

    WebService的简单实现 一.socket主机创建和使用过程 1.socket()//创建套接字 2.Setsockopt()//将套接字属性设置为允许和特定地点绑定 3.Bind()//将套接 ...

  5. Red Hat linux 如何增加swap空间

    按步骤介绍 Red Hat linux 如何增加swap空间 方法/步骤 第一步:确保系统中有足够的空间来用做swap交换空间,我使用的是KVM,准备在一个独立的文件系统中添加一个swap交换文件,在 ...

  6. createElement

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  7. (转载)在mysql中,column 'id' in field list is ambiguous

    (转载)http://blog.chinaunix.net/uid-20665047-id-3137284.html column 'id' in field list is ambiguous 这个 ...

  8. [PeterDLax著泛函分析习题参考解答]第7章 Hilbert 空间结果的应用

    1. 对测度是 $\sigma$ 有限的情形证明 Radon-Nikodym 定理. 证明: 设 $\mu,\nu$ 均为 $\sigma$ 有限的非负测度, 则存在分割 $$\bex X=\cup_ ...

  9. 转载--C++中struct与class

    转自:http://www.cnblogs.com/york-hust/archive/2012/05/29/2524658.html 1. C++中的struct对C中的struct进行了扩充,它已 ...

  10. TFS2010中文版安装

    VS2010的中文版出来一段时间了,对TFS2010的了解,也有一段时间了,只不过中文版还是首次见到.于是把第一次安装的图片分享出来,公供参数. TFS2010安装环境是操作系统为Windows Se ...