4742: [Usaco2016 Dec]Team Building

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 21  Solved: 16
[Submit][Status][Discuss]

Description

Every year, Farmer John brings his NN cows to compete for "best in show" at the state fair. His arch
-rival, Farmer Paul, brings his MM cows to compete as well (1≤N≤1000,1≤M≤1000).Each of the N+MN+
M cows at the event receive an individual integer score. However, the final competition this year wi
ll be determined based on teams of KK cows (1≤K≤10), as follows: Farmer John and Farmer Paul both 
select teams of KK of their respective cows to compete. The cows on these two teams are then paired 
off: the highest-scoring cow on FJ's team is paired with the highest-scoring cow on FP's team, the s
econd-highest-scoring cow on FJ's team is paired with the second-highest-scoring cow on FP's team, a
nd so on. FJ wins if in each of these pairs, his cow has the higher score.Please help FJ count the n
umber of different ways he and FP can choose their teams such that FJ will win the contest. That is,
 each distinct pair (set of KK cows for FJ, set of KK cows for FP) where FJ wins should be counted. 
Print your answer modulo 1,000,000,009.
每年农夫约翰都会带着他的N只牛去集会上参加“你是最棒哒“的比赛。他的对手农夫保罗也带了M只牛去参加比赛
(1 ≤ N ≤ 1000, 1 ≤ M ≤ 1000)。每只牛都有自己的分数。两人会选择K只牛组成队伍(1 ≤ K ≤ 10),两队
牛在按分数大小排序后一一配对,并且约翰打败保罗当且仅当对于每一对牛,约翰的牛分数都比保罗的高。请帮助
约翰计算约翰打败保罗的方案数 mod 1000000009。两种方案不同,当且仅当约翰或保罗选择的牛的集合与另一种
方案不同。
 

Input

The first line of input contains N, M, and K. The value of K will be no larger than N or M.
The next line contains the N scores of FJ's cows.
The final line contains the M scores of FP's cows.
 

Output

Print the number of ways FJ and FP can pick teams such that FJ wins, modulo 1,000,000,009.
 

Sample Input

10 10 3
1 2 2 6 6 7 8 9 14 17
1 3 8 10 10 16 16 18 19 19

Sample Output

382

HINT

 

Source

[Submit][Status][Discuss]

看到网上还没有人写题解,来抢百度的沙发好了(不知道抢的抢不上)。

就是一道水水的动态规划了:首先得给两个序列分别排个序,$f[i][j][k]$表示使用FJ的前i头牛,以及FP的前j头牛,组出k头牛的战斗序列的方案数。$f[i][j][k]$向$f[i+1][j][k]$和$f[i][j+1][k]$转移,分别代表不选择FJ的第i头牛以及不选择FP的第j头牛,$f[i][j][k]$向$f[i+1][j+1][k+1]$转移当且仅当FJ的第i+1头牛能胜过FP的第j+1头牛。发现$f[i+1][j][k]$和$f[i][j+1][k]$向$f[i+1][j+1][k]$都有转移,而事实上这两次转移的方案是一样的,简言之,算重了,咋办,减掉就好,所以$f[i+1][j+1][k]-=f[i][j][k]$。

 #include <cstdio>
#include <algorithm> inline int nextChar(void) {
const int siz = ; static char buf[siz];
static char *hd = buf + siz;
static char *tl = buf + siz; if (hd == tl)
fread(hd = buf, , siz, stdin); return *hd++;
} inline int nextInt(void) {
register int ret = ;
register int neg = false;
register int bit = nextChar(); for (; bit < ; bit = nextChar())
if (bit == '-')neg ^= true; for (; bit > ; bit = nextChar())
ret = ret * + bit - ; return neg ? -ret : ret;
} const int siz = ;
const int mod = ; int n, m, d; int a[siz];
int b[siz]; int f[siz][siz][]; inline void add(int &a, int b)
{
a += b; if (a >= mod)
a -= mod; if (a < )
a += mod;
} signed main(void)
{
n = nextInt();
m = nextInt();
d = nextInt(); for (int i = ; i <= n; ++i)
a[i] = nextInt(); for (int i = ; i <= m; ++i)
b[i] = nextInt(); std::sort(a + , a + + n);
std::sort(b + , b + + m); f[][][] = ; for (int i = ; i <= n; ++i)
for (int j = ; j <= m; ++j)
for (int k = ; k <= d; ++k)
if (f[i][j][k])
{
add(f[i + ][j][k], f[i][j][k]);
add(f[i][j + ][k], f[i][j][k]);
add(f[i + ][j + ][k], -f[i][j][k]); if (a[i + ] > b[j + ])
add(f[i + ][j + ][k + ], f[i][j][k]);
} printf("%d\n", f[n][m][d]);
}

@Author: YouSiki

BZOJ 4742: [Usaco2016 Dec]Team Building的更多相关文章

  1. BZOJ4742 : [Usaco2016 Dec]Team Building

    如果我们将两个人拥有的牛混在一起,并按照战斗力从小到大排序,同时把第一个人选的牛看成$)$,第二个人选的牛看成$($的话,那么我们会发现一个合法的方案对应了一个长度为$2k$的括号序列. 于是DP即可 ...

  2. bzoj 4747: [Usaco2016 Dec]Counting Haybales

    23333,在扒了一天题解之后发现我竟然还能秒题,虽然这是个pj的sb题... (排个序,然后upper_bound和lower_bound一用就行了(是不是有O(1)的查询方法啊??貌似要离散啊,一 ...

  3. BZOJ 4576: [Usaco2016 Open]262144

    Description 一个序列,每次可以将两个相同的数合成一个数,价值+1,求最后最大价值 \(n \leqslant 262144\) Sol DP. 这道题是 BZOJ 4580: [Usaco ...

  4. CF1316E Team Building

    CF1316E [Team Building] 状压dp,感觉比D简单 \(f[i][s]\),表示考虑前\(i\)个人,状态为\(s\)(\(s\)的第\(j-1\)个二进制位表示队员的第\(j\) ...

  5. BZOJ 1626: [Usaco2007 Dec]Building Roads 修建道路( MST )

    计算距离时平方爆了int结果就WA了一次...... ------------------------------------------------------------------------- ...

  6. bzoj 1626: [Usaco2007 Dec]Building Roads 修建道路 -- 最小生成树

    1626: [Usaco2007 Dec]Building Roads 修建道路 Time Limit: 5 Sec  Memory Limit: 64 MB Description Farmer J ...

  7. BZOJ 1626 [Usaco2007 Dec]Building Roads 修建道路:kruskal(最小生成树)

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1626 题意: 有n个农场,坐标为(x[i],y[i]). 有m条原先就修好的路,连接农场( ...

  8. BZOJ——1626: [Usaco2007 Dec]Building Roads 修建道路

    http://www.lydsy.com/JudgeOnline/problem.php?id=1626 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1 ...

  9. bzoj 1626: [Usaco2007 Dec]Building Roads 修建道路【最小生成树】

    先把已有的边并查集了,然后MST即可 记得开double #include<iostream> #include<cstdio> #include<algorithm&g ...

随机推荐

  1. JDBC关于时间的存取

    Oracle数据库默认时间存储是java.sql.date,而java程序中的时间默认是java.util.date,所以通过JDBC存取的 时候会涉及到时间的转换问题. 1.日期存取 存入数据库的时 ...

  2. 苹果手机不支持click文字 需要添加 cursor:pointer 才能 识别可以点击

    给一个div 绑定一个 click事件,  苹果手机会识别不了,必须添加一个 cursor:pointer 才能 识别可以点击.安卓正常识别.

  3. 一步步实现ABAP后台导入EXCEL到数据库【1】

    在SAP的应用当中,导入.导出EXCEL文件的情况是一个常见的需求,有时候用户需要将大量数据定期导入到SAP的数据库中.这种情况下,使用导入程序在前台导入可能要花费不少的时间,如果能安排导入程序为后台 ...

  4. JVM之上的语言小集

    1 JVM上的编程语言https://en.wikipedia.org/wiki/List_of_JVM_languages主要的有:Clojure, a functional Lisp dialec ...

  5. EasyUI combobox

    高度自适应 data-options="required:true,editable:false,panelHeight:'auto',panelMaxHeight:170" 加上 ...

  6. Java并发基础框架AbstractQueuedSynchronizer初探(ReentrantLock的实现分析)

    AbstractQueuedSynchronizer是实现Java并发类库的一个基础框架,Java中的各种锁(RenentrantLock, ReentrantReadWriteLock)以及同步工具 ...

  7. hadoop常用的操作命令

    1.显示hdfs上test目录下的所有文件列表 hadoop fs -ls /test/ 2.查看hdfs中的文件内容 hadoop fs -cat /daas/bstl/term/rawdt/201 ...

  8. linux基本知识2

    date:时间管理 linux时钟: 硬件时钟:hwclock -s:硬件时钟到系统时钟   -w:系统时钟到硬件时钟 系统时钟:date 如何查看是外部命令还是内部命令: type COMMAND ...

  9. java遍历给定目录,树形结构输出所有文件,包括子目录中的文件

    (转自:http://blog.csdn.net/gangwazi0525/article/details/7569701) import java.io.File; public class Rea ...

  10. Centos7 升级内核和应用TCP BBR 算法

    首先确认目前使用内核 uname -r rpm --import https://www.elrepo.org/RPM-GPG-KEY-elrepo.org rpm -Uvh http://www.e ...