【洛谷P3389 【模板】高斯消元法】
这是个版子题,当然本蒟蒻也是看了好几天才明白
对于这样的线性方程组,我们可以看成是一个矩阵
对于百度百科给的定义(我感到很迷)赶脚和行列式有的一拼
但我们要注意的是:
行列式是一个确切的值(有关行列式求值,下片博文再说),可以看做是一个数值;
而矩阵不同,矩阵是一个数表,无特殊的值。当然,性质也略有不同(这里就先不细讲了)
高斯消元的核心就是把这个n*n的矩阵消成一个对角矩阵(就是除了a【i】【i】为1以外,其余全为零但是不要乱划a【i】【n+1】这是我们要输出的东西)然后就ok了
其中一些性质可以通过度娘或下面的(李昊的)过程代码验证一下
//这不是AC代码,只是一个检测的(黈力的小心一点啊QAQ)
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
using namespace std;
typedef long long ll;
typedef long double ld;
typedef pair<int,int> pr;
const double pi=acos(-);
#define rep(i,a,n) for(int i=a;i<=n;i++)
#define per(i,n,a) for(int i=n;i>=a;i--)
#define Rep(i,u) for(int i=head[u];i;i=Next[i])
#define clr(a) memset(a,0,sizeof a)
#define pb push_back
#define mp make_pair
#define fi first
#define sc second
ld eps=1e-;
ll pp=;
ll mo(ll a,ll pp){if(a>= && a<pp)return a;a%=pp;if(a<)a+=pp;return a;}
ll powmod(ll a,ll b,ll pp){ll ans=;for(;b;b>>=,a=mo(a*a,pp))if(b&)ans=mo(ans*a,pp);return ans;}
ll read(){
ll ans=;
char last=' ',ch=getchar();
while(ch<'' || ch>'')last=ch,ch=getchar();
while(ch>='' && ch<='')ans=ans*+ch-'',ch=getchar();
if(last=='-')ans=-ans;
return ans;
}
//head
int n,m;
double a[][]; bool check(int k){
if(fabs(a[k][n+])<eps)return ;
rep(i,,n)
if(fabs(a[k][i])>eps)return ;
return ;
}
int main(){
freopen("1.txt","r",stdin);
n=read();m=read();
// a_i,1 a_i,2 ... a_i,n a_i,n+1
rep(i,,m)
rep(j,,n+)a[i][j]=read();
rep(j,,m){
rep(k,,n+)cout<<a[j][k]<<" ";
puts("");
}
int flag=;
rep(i,,n){
int t=i;
while(a[t][i]== && t<=n)t+=;
if(t==n+){
flag=;
continue;
}
rep(j,,n+)swap(a[i][j],a[t][j]);
double kk=a[i][i];
rep(j,,n+)a[i][j]/=kk;
rep(j,,m)
if(i!=j){
double kk=a[j][i];
rep(k,,n+)
a[j][k]-=kk*a[i][k];
}
puts("------------");
rep(j,,m){
rep(k,,n+)cout<<a[j][k]<<" ";
puts("");
}
}
if(flag){
rep(i,,m)
if(!check(i)){
printf("No solution\n");
return ;
}
printf("So many solutions\n");
} }
通过这个代码,可以看到化简的每一步过程
下面才是真正的AC代码:
//真正的AC代码
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
int n,s;
double a[][];
int main()
{
cin>>n;
for(int i=;i<=n;i++)//输入矩阵
for(int j=;j<=n+;j++)//别忘记最后那一列
cin>>a[i][j];
for(int i=;i<=n;i++)
{
s=i;
while(a[s][i]==&&s<=n)
s++;
if(s==n+)
{
cout<<"No Solution";//判是否有解(若有一行或一列全为0,则无解)
return ;
}
for(int j=;j<=n+;j++)
swap(a[i][j],a[s][j]);
double k=a[i][i];
for(int j=;j<=n+;j++)
a[i][j]=a[i][j]/k; //为防止a【i】【i】为零,可以换一下
for(int j=;j<=n;j++)
{
if(i!=j)
{
double ki=a[j][i];
for(int m=;m<=n+;m++)
a[j][m]=a[j][m]-ki*a[i][m];//这就保证可以将除了a【i】【i】的全部为0
}
}
}
for(int i=;i<=n;i++)
printf("%.2lf\n",a[i][n+]);//输出ouo
return ;
}
这其中用到了一些神奇的性质,还是提前掌握为妙
【洛谷P3389 【模板】高斯消元法】的更多相关文章
- 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...
- 洛谷P3375 [模板]KMP字符串匹配
To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...
- LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)
为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...
- 【AC自动机】洛谷三道模板题
[题目链接] https://www.luogu.org/problem/P3808 [题意] 给定n个模式串和1个文本串,求有多少个模式串在文本串里出现过. [题解] 不再介绍基础知识了,就是裸的模 ...
- 洛谷-P5357-【模板】AC自动机(二次加强版)
题目传送门 -------------------------------------- 过年在家无聊补一下这周做的几道AC自动机的模板题 sol:AC自动机,还是要解决跳fail边产生的重复访问,但 ...
- 洛谷.1919.[模板]A*B Problem升级版(FFT)
题目链接:洛谷.BZOJ2179 //将乘数拆成 a0*10^n + a1*10^(n-1) + ... + a_n-1的形式 //可以发现多项式乘法就模拟了竖式乘法 所以用FFT即可 注意处理进位 ...
- 洛谷.3803.[模板]多项式乘法(FFT)
题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...
- 洛谷.3803.[模板]多项式乘法(NTT)
题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...
- 洛谷P3385 [模板]负环 [SPFA]
题目传送门 题目描述 暴力枚举/SPFA/Bellman-ford/奇怪的贪心/超神搜索 输入输出格式 输入格式: 第一行一个正整数T表示数据组数,对于每组数据: 第一行两个正整数N M,表示图有N个 ...
- [洛谷P3806] [模板] 点分治1
洛谷 P3806 传送门 这个点分治都不用减掉子树里的了,直接搞就行了. 注意第63行 if(qu[k]>=buf[j]) 不能不写,也不能写成>. 因为这个WA了半天...... 如果m ...
随机推荐
- SpringBoot 配置 跨域支持
跨域资源共享(CORS,请求协议,请求地址,请求端口三者必须相同才是同一服务器,否则都要进行跨域操作)标准新增了一组 HTTP 首部字段,允许服务器声明哪些源站有权限访问哪些资源.另外,规范要求,对那 ...
- Spring 事务与脏读、不可重复读、幻读
索引: 目录索引 参看代码 GitHub: 1.Spring 事务 2.事务行为 一.Spring 事务: Spring 的事务机制是用统一的机制来处理不同数据访问技术的事务处理. Spring 的事 ...
- 20181112-PostgreSQL数据库dmp文件导入(记录一次数据导入)
20181112-PostgreSQL数据库dmp文件导入 标注:dmp文件导入,场景:多个schema导入 1. 环境准备: postgres集群master节点上,postgres用户执行以下操作 ...
- 复制命令(COPY)
COPY 命令: // 描述: 将一个或多个文件从一个位置复制到另一个位置. ### 注意:如果想复制文件夹,请使用 XCOPY . // 语法: copy [/a] [/b] [/d] [/v] ...
- 我的第一个python web开发框架(24)——系统重构与ORM
小白弄完代码版本管理和接口文档后,兴奋的找到老菜. 小白:老大,我已经按你讲的要求,将代码版本管理和接口文档都搞好了.从项目开始到现在,除了代码编写,感觉学会好多东西啊. 老菜:嗯嗯,实战确实需要掌握 ...
- #017 python实验课第五周
总结写在最前面: 1.语法还是不会...(每周强制留的C语言一百题都没空写PS.团委诶....)都是现查现用(莫凡Python这个网站特别好用知识点一个视频就一分钟B站的播放器没广告,用啥学啥,还配有 ...
- 基于tcp的云盘上传下载的模拟
老师的博客: server端 import json import struct import json import struct import socket import os sk = sock ...
- SQL MAX() 函数
MAX() 函数 MAX 函数返回一列中的最大值.NULL 值不包括在计算中. SQL MAX() 语法 SELECT MAX(column_name) FROM table_name 注释:MIN ...
- Hexo + GitEE 搭建、备份、恢复、多终端
Hexo 是一个快速.简洁且高效的博客框架.Hexo 使用 Markdown(或其他渲染引擎)解析文章,在几秒内,即可利用靓丽的主题生成静态网页. Hexo 是使用的比较多的博客框架了,我也尝试自己搭 ...
- spring+struts2+hibernate框架搭建(Maven工程)
搭建Spring 1.porm.xml中添加jar包 <!-- spring3 --> <dependency> <groupId>org.springframew ...