【原创】大数据基础之Drill(2)Drill1.14+Hive2.1.1运行
问题
Drill最新版本是1.14,从1.13开始Drill支持hive的版本升级到2.3.2,详见1.13的release notes
The Hive client for Drill is updated to version 2.3.2. With the update, Drill supports queries on transactional (ACID) and non-transactional Hive bucketed ORC tables. The updated libraries are backward compatible with earlier versions of the Hive server and metastore. (DRILL-5978)
强行使用Drill1.14连接Hive2.1.1会由于metastore thrift接口变化导致问题,具体体现为 show tables是空,具体报错如下:
2018-10-10 13:03:54,355 [244277c5-ba8c-b6c8-8f99-2cdde9f3c4d8:frag:0:0] WARN o.a.d.e.s.h.DrillHiveMetaStoreClient - Failure while attempting to get hive table. Retries once.
org.apache.thrift.TApplicationException: Invalid method name: 'get_table_req'
at org.apache.thrift.TApplicationException.read(TApplicationException.java:111) ~[drill-hive-exec-shaded-1.14.0.jar:1.14.0]
at org.apache.drill.exec.store.hive.DrillHiveMetaStoreClient$TableLoader.load(DrillHiveMetaStoreClient.java:531) [drill-storage-hive-core-1.14.0.jar:1.14.0]
at com.google.common.cache.LocalCache$LoadingValueReference.loadFuture(LocalCache.java:3527) [guava-18.0.jar:na]
at com.google.common.cache.LocalCache$Segment.loadSync(LocalCache.java:2319) [guava-18.0.jar:na]
at com.google.common.cache.LocalCache$Segment.lockedGetOrLoad(LocalCache.java:2282) [guava-18.0.jar:na]
at com.google.common.cache.LocalCache$Segment.get(LocalCache.java:2197) [guava-18.0.jar:na]
at com.google.common.cache.LocalCache.get(LocalCache.java:3937) [guava-18.0.jar:na]
at com.google.common.cache.LocalCache.getOrLoad(LocalCache.java:3941) [guava-18.0.jar:na]
at com.google.common.cache.LocalCache$LocalLoadingCache.get(LocalCache.java:4824) [guava-18.0.jar:na]
at org.apache.drill.exec.store.hive.DrillHiveMetaStoreClient$HiveClientWithCaching.getHiveReadEntry(DrillHiveMetaStoreClient.java:495) [drill-storage-hive-core-1.14.0.jar:1.14.0]
at org.apache.drill.exec.store.hive.schema.HiveSchemaFactory$HiveSchema.getSelectionBaseOnName(HiveSchemaFactory.java:230) [drill-storage-hive-core-1.14.0.jar:1.14.0]
at org.apache.drill.exec.store.hive.schema.HiveSchemaFactory$HiveSchema.getDrillTable(HiveSchemaFactory.java:210) [drill-storage-hive-core-1.14.0.jar:1.14.0]
at org.apache.drill.exec.store.hive.schema.HiveDatabaseSchema.getTable(HiveDatabaseSchema.java:62) [drill-storage-hive-core-1.14.0.jar:1.14.0]
at org.apache.drill.exec.store.AbstractSchema.getTablesByNames(AbstractSchema.java:239) [drill-java-exec-1.14.0.jar:1.14.0]
at org.apache.drill.exec.store.AbstractSchema.getTableNamesAndTypes(AbstractSchema.java:257) [drill-java-exec-1.14.0.jar:1.14.0]
at org.apache.drill.exec.store.ischema.InfoSchemaRecordGenerator$Tables.visitTables(InfoSchemaRecordGenerator.java:301) [drill-java-exec-1.14.0.jar:1.14.0]
at org.apache.drill.exec.store.ischema.InfoSchemaRecordGenerator.scanSchema(InfoSchemaRecordGenerator.java:216) [drill-java-exec-1.14.0.jar:1.14.0]
at org.apache.drill.exec.store.ischema.InfoSchemaRecordGenerator.scanSchema(InfoSchemaRecordGenerator.java:209) [drill-java-exec-1.14.0.jar:1.14.0]
at org.apache.drill.exec.store.ischema.InfoSchemaRecordGenerator.scanSchema(InfoSchemaRecordGenerator.java:209) [drill-java-exec-1.14.0.jar:1.14.0]
at org.apache.drill.exec.store.ischema.InfoSchemaRecordGenerator.scanSchema(InfoSchemaRecordGenerator.java:196) [drill-java-exec-1.14.0.jar:1.14.0]
at org.apache.drill.exec.store.ischema.InfoSchemaTableType.getRecordReader(InfoSchemaTableType.java:58) [drill-java-exec-1.14.0.jar:1.14.0]
at org.apache.drill.exec.store.ischema.InfoSchemaBatchCreator.getBatch(InfoSchemaBatchCreator.java:34) [drill-java-exec-1.14.0.jar:1.14.0]
at org.apache.drill.exec.store.ischema.InfoSchemaBatchCreator.getBatch(InfoSchemaBatchCreator.java:30) [drill-java-exec-1.14.0.jar:1.14.0]
at org.apache.drill.exec.physical.impl.ImplCreator.getRecordBatch(ImplCreator.java:159) [drill-java-exec-1.14.0.jar:1.14.0]
at org.apache.drill.exec.physical.impl.ImplCreator.getChildren(ImplCreator.java:182) [drill-java-exec-1.14.0.jar:1.14.0]
at org.apache.drill.exec.physical.impl.ImplCreator.getRecordBatch(ImplCreator.java:137) [drill-java-exec-1.14.0.jar:1.14.0]
at org.apache.drill.exec.physical.impl.ImplCreator.getChildren(ImplCreator.java:182) [drill-java-exec-1.14.0.jar:1.14.0]
at org.apache.drill.exec.physical.impl.ImplCreator.getRootExec(ImplCreator.java:110) [drill-java-exec-1.14.0.jar:1.14.0]
at org.apache.drill.exec.physical.impl.ImplCreator.getExec(ImplCreator.java:87) [drill-java-exec-1.14.0.jar:1.14.0]
at org.apache.drill.exec.work.fragment.FragmentExecutor.run(FragmentExecutor.java:261) [drill-java-exec-1.14.0.jar:1.14.0]
at org.apache.drill.common.SelfCleaningRunnable.run(SelfCleaningRunnable.java:38) [drill-common-1.14.0.jar:1.14.0]
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) [na:1.8.0_60]
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) [na:1.8.0_60]
at java.lang.Thread.run(Thread.java:745) [na:1.8.0_60]
编译
于是尝试重新编译Drill1.14,将依赖的hive版本降到2.1.1,下载代码
http://mirror.bit.edu.cn/apache/drill/drill-1.14.0/apache-drill-1.14.0-src.tar.gz
POM
修改pom中的hive版本
<hive.version>2.3.2</hive.version>
修改为<hive.version>2.1.1</hive.version>
重新编译打包后发现问题依旧,经检查发现修改版本之后只有jars/3rdparty下的3个hive相关jar从2.3.2改为2.1.1
hive-contrib-2.1.1.jar
hive-hbase-handler-2.1.1.jar
hive-metastore-2.1.1.jar
报错的jar是drill-hive-exec-shaded-1.14.0.jar,这个jar包中包含包含hive-exec及依赖,
<artifactId>maven-shade-plugin</artifactId>
<configuration>
<artifactSet>
<includes>
<include>org.apache.hive:hive-exec</include>
并且没有使用配置的hive.version
<dependency>
<groupId>org.apache.hive</groupId>
<artifactId>hive-exec</artifactId>
<scope>compile</scope>
导致打进jar包中的hive-exec是2.3.2版本的,增加hive.version配置
<dependency>
<groupId>org.apache.hive</groupId>
<artifactId>hive-exec</artifactId>
<version>${hive.version}</version>
<scope>compile</scope>
再打包,问题消失,show tables正常;
Hadoop Location
官方文档说明如下:
Apache Drill users must tell Drill-on-YARN the location of your Hadoop install. Set the HADOOP_HOME environment variable in $DRILL_SITE/drillenv.sh to point to your Hadoop installation:
export HADOOP_HOME= /path/to/hadoop-home
但配置之后依然存在问题:
1)报错
Diagnostics: File file:/user/drill/site.tar.gz does not exist
java.io.FileNotFoundException: File file:/user/drill/site.tar.gz does not exist
需要添加link
ln -s $HADOOP_HOME/etc/hadoop/core-site.xml $DRILL_SITE/core-site.xml
2)在实际查询时会报错找不到hdfs_name,需要添加link
ln -s $HADOOP_HOME/etc/hadoop/hdfs-site.xml $DRILL_SITE/hdfs-site.xml
【原创】大数据基础之Drill(2)Drill1.14+Hive2.1.1运行的更多相关文章
- 【原创】大数据基础之Drill(1)简介、安装及使用
https://drill.apache.org/ 一 简介 Drill is an Apache open-source SQL query engine for Big Data explorat ...
- 【原创】大数据基础之Zookeeper(2)源代码解析
核心枚举 public enum ServerState { LOOKING, FOLLOWING, LEADING, OBSERVING; } zookeeper服务器状态:刚启动LOOKING,f ...
- 【原创】大数据基础之Benchmark(2)TPC-DS
tpc 官方:http://www.tpc.org/ 一 简介 The TPC is a non-profit corporation founded to define transaction pr ...
- 【原创】大数据基础之词频统计Word Count
对文件进行词频统计,是一个大数据领域的hello word级别的应用,来看下实现有多简单: 1 Linux单机处理 egrep -o "\b[[:alpha:]]+\b" test ...
- 【原创】大数据基础之Impala(1)简介、安装、使用
impala2.12 官方:http://impala.apache.org/ 一 简介 Apache Impala is the open source, native analytic datab ...
- 大数据基础知识:分布式计算、服务器集群[zz]
大数据中的数据量非常巨大,达到了PB级别.而且这庞大的数据之中,不仅仅包括结构化数据(如数字.符号等数据),还包括非结构化数据(如文本.图像.声音.视频等数据).这使得大数据的存储,管理和处理很难利用 ...
- 大数据基础知识问答----spark篇,大数据生态圈
Spark相关知识点 1.Spark基础知识 1.Spark是什么? UCBerkeley AMPlab所开源的类HadoopMapReduce的通用的并行计算框架 dfsSpark基于mapredu ...
- 大数据基础知识问答----hadoop篇
handoop相关知识点 1.Hadoop是什么? Hadoop是一个由Apache基金会所开发的分布式系统基础架构.用户可以在不了解分布式底层细节的情况下,开发分布式程序.充分利用集群的威力进行高速 ...
- hadoop大数据基础框架技术详解
一.什么是大数据 进入本世纪以来,尤其是2010年之后,随着互联网特别是移动互联网的发展,数据的增长呈爆炸趋势,已经很难估计全世界的电子设备中存储的数据到底有多少,描述数据系统的数据量的计量单位从MB ...
随机推荐
- C#中字节数组(byte[])和字符串相互转换
转换过程主要使用到System.Text.Encoding命名空间下的类 1. 字符串转换成字节数组byte[]: string str = "This is test string&quo ...
- openstack搭建之-horizon配置(14)
一.ctrl控制节点安装horizon #安装软件yum install openstack-dashboard -y vim /etc/openstack-dashboard/local_setti ...
- springboot打jar包正常无法访问页面
网上看到太多说版本换成 1.4.2.RELEASE. 可以将程序打成war包发布, 1.启动类改为 @Overrideprotected SpringApplicationBuilder config ...
- 控制结构(6): 最近最少使用(LRU)
// 上一篇:必经之地(using) // 下一篇:程序计数器(PC) 基于语言提供的基本控制结构,更好地组织和表达程序,需要良好的控制结构. There are only two hard thin ...
- HTTP状态码表
HTTP状态码(英语:HTTP Status Code)是用以表示网页服务器HTTP响应状态的3位数字代码.所有状态码的第一个数字代表了响应的五种状态之一. 1xx消息 这一类型的状态码,代表请求已被 ...
- Python——Django-urls.py的作用
一.urls.py的作用是保存路径和函数的对应关系 二.函数返回指定内容 from django.urls import path #引用HTTP协议的代码 from django.shortcuts ...
- Go语言的通道(1)-无缓冲通道
前言: 上文中我们采用了[原子函数]已经[共享锁]两种方式分别对多个goroutine进行了同步,但是在go语言中提供了另一种更好的方式,那就是使用通道(Channel). 一.通道是什么? 其实无论 ...
- Django_ORM_字段属性
Django_ORM_字段属性 常用字段 AutoField int自增列,必填参 primary_key=True 默认会自动创建一个列名为id的列 IntegerField 一个整数类型,范围在 ...
- mongoDB 文档操作_增
增加 / 插入 /保存 单文档插入 命令 db.collection.insertOne(doc) 功能 向被 use 的数据库中插入数据 实例 db.class.insertOne({"n ...
- 忘掉Ghost!利用Win10自带功能,玩转系统备份&恢复 -- 关于系统恢复的深度思考
上一篇文章讲了,系统可以正常启动,如何从D盘恢复系统到C盘的情况. 如果系统不能启动,要怎么去恢复系统,恢复后会是什么结果? 先说明系统结构: 系统版本:Windows 10 (1709) 硬盘1(5 ...